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MIZOGUCHI-TAKAHASHI’S FIXED POINT THEOREM IS A REAL
GENERALIZATION OF NADLER’S

TOMONARI SUZUKI

Abstract. We give an example which says that Mizoguchi-Takahashi’s fixed point
theorem for set-valued mappings is a real generalization of Nadler’s. The example is
a counterexample to a recent result in Eldred, Anuradha and Veeramani [J. Math.
Anal. Appl. (2007), doi:10.1016/j.jmaa.2007.01.087]. We also give a very simple proof
of Mizoguchi-Takahashi’s theorem.

1. Introduction

Throughout this paper, we denote by N the set of all positive integers and by R the
set of all real numbers.

Let (X, d) be a metric space. We denote by CB(X) the class of all nonempty bounded
closed subsets of X. Let H be the Hausdorff metric with respect to d, that is,

H(A, B) = max
{

sup
u∈A

d(u,B), sup
v∈B

d(v, A)
}

for every A, B ∈ CB(X), where d(u,B) = inf{d(u, y) : y ∈ B}. In 1969, Nadler [8]
extended the Banach contraction principle [2] to set-valued mappings.

Theorem 1 (Nadler [8]). Let (X, d) be a complete metric space and let T be a mapping
from X into CB(X). Assume that there exists r ∈ [0, 1) such that

(1) H(Tx, Ty) ≤ r d(x, y)

for all x, y ∈ X. Then there exists z ∈ X such that z ∈ Tz.

Mizoguchi and Takahashi [6] proved a generalization (Theorem 2 below) of Theorem
1; see Theorem 2 in Alesina, Massa and Roux [1]. Theorem 2 is a partial answer of
Problem 9 in Reich [9]. See also [4, 7, 10].

Theorem 2 (Mizoguchi and Takahashi [6]). Let (X, d) be a complete metric space and
let T be a mapping from X into CB(X). Assume

(2) H(Tx, Ty) ≤ α
(
d(x, y)

)
d(x, y)

for all x, y ∈ X, where α is a function from [0,∞) into [0, 1) satisfying lim sup
s→t+0

α(s) < 1

for all t ∈ [0,∞). Then there exists z ∈ X such that z ∈ Tz.

Remark. The domain of α is (0,∞) in the original statement. However the both are
equivalent because d(x, y) = 0 implies H(Tx, Ty) = 0.
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Very recently, Eldred et al [5] claimed that Theorem 2 is equivalent to Theorem 1 in
the following sense: If a mapping T from X into CB(X) satisfies (2), then there exists
a nonempty complete subset M of X satisfying the following:

• M is T -invariant, that is, Tx ⊂ M for all x ∈ M .
• T satisfies (1) for all x, y ∈ M .

In this paper, we give a counterexample to the claim. We also give a very simple
proof of Theorem 2.

2. Results

We first give a counterexample to the claim due to Eldred et al [5].

Example 1. Let `∞ be the Banach space consisting of all bounded real sequences with
supremum norm and let {en} be the canonical basis of `∞. Let {τn} be a bounded,
strictly increasing sequence in (0,∞). Put xn = τn en and Xn = {xn, xn+1, xn+2, · · · }
for n ∈ N. Define a bounded, complete subset X of `∞ by X = X1 and a mapping T
from X into CB(X) by

Txn =

{
X if n = 1,

Xn−1 if n > 1

for n ∈ N. Define a function α from [0,∞) into [0, 1) by

α(t) =

{
τn−1/τn if t = τn for some n ∈ N with n > 2,

0 otherwise

Then the following hold:

(i) There is no T -invariant subset M such that M 6= ∅ and (1) holds for all x, y ∈ M .
(ii) T satisfies (2) for all x, y ∈ X.
(iii) lim sup

s→t+0
α(s) < 1 for all t ∈ [0,∞).

Proof. We first note that X is a unique T -invariant subset of X because xn−1 ∈ Txn

for n ∈ N with n > 1 and Tx1 = X. The following are easily proved:

• If m > n, then d(xm, xn) = τm.
• If m > n and m > 2, then H(Txm, Txn) = τm−1.
• H(Tx2, Tx1) = 0.

Thus, we obtain

lim
n→∞

H(Txn, Txn+1)

d(xn, xn+1)
= lim

n→∞
τn

τn+1

=
τ∞
τ∞

= 1,

where τ∞ := limn τn < ∞. Therefore we have shown (i). Fix m,n ∈ N with m > n. In
the case where m > 2, we have

α
(
d(xm, xn)

)
d(xm, xn) = α(τm) τm = τm−1 = H(Txm, Txn).

In the other case, where m = 2, noting n = 1, we have

α
(
d(x2, x1)

)
d(x2, x1) = α(τ2) τ2 = 0 = H(Tx2, Tx1).

Thus, we obtain (ii). Since {τn} is strictly increasing, lim sup
s→t+0

α(s) = 0 < 1 for all

t ∈ [0,∞). Therefore we obtain (iii). ¤
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We next give an alternative proof of Theorem 2 because the proof in [6] is not simple.
Another proof in [3] is not yet simple. We remark that we do not use reductio ad
absurdum in our proof.

Proof of Theorem 2. Define a function β from [0,∞) into [0, 1) by β(t) =
(
α(t) + 1

)
/2

for t ∈ [0,∞). Then the following hold:

• lim sup
s→t+0

β(s) < 1 for all t ∈ [0,∞).

• For x, y ∈ X and u ∈ Tx, there exists an element v of Ty such that d(u, v) ≤
β
(
d(x, y)

)
d(x, y).

Putting u = y, we obtain the following:

• For x ∈ X and y ∈ Tx, there exists an element v of Ty such that d(y, v) ≤
β
(
d(x, y)

)
d(x, y).

Thus, we can define a sequence {xn} in X satisfying

xn+1 ∈ Txn and d(xn+1, xn+2) ≤ β
(
d(xn, xn+1)

)
d(xn, xn+1)

for n ∈ N. Since β(t) < 1 for all t ∈ [0,∞), {d(xn, xn+1)} is a nonincreasing se-
quence in R. Hence {d(xn, xn+1)} converges to some nonnegative real number τ . Since
lim sup
s→τ+0

β(s) < 1 and β(τ) < 1, there exist r ∈ [0, 1) and ε > 0 such that β(s) ≤ r for

all s ∈ [τ, τ + ε]. We can take ν ∈ N such that τ ≤ d(xn, xn+1) ≤ τ + ε for all n ∈ N
with n ≥ ν. Then since

d(xn+1, xn+2) ≤ β
(
d(xn, xn+1)

)
d(xn, xn+1) ≤ r d(xn, xn+1)

for n ∈ N with n ≥ ν. we have

∞∑
n=1

d(xn, xn+1) ≤
ν∑

n=1

d(xn, xn+1) +
∞∑

n=1

rn d(xν , xν+1) < ∞

and hence {xn} is a Cauchy sequence. Since X is complete, {xn} converges to some
point z ∈ X. Since

d(z, Tz) = lim
n→∞

d(xn+1, T z) ≤ lim
n→∞

H(Txn, T z)

≤ lim
n→∞

β
(
d(xn, z)

)
d(xn, z) ≤ lim

n→∞
d(xn, z) = 0

and Tz is closed, we obtain z ∈ Tz. ¤

Theorems 1 and 2 are not equivalent, however, from the above proof, we can think
that the both are very close. The essence of the both is the following theorem, which
we can prove as in the above proof.

Theorem 3. Let (X, d) be a complete metric space and let T be a mapping from X into
CB(X). Assume there exists ε > 0 satisfying the following:

• There exists r ∈ [0, 1) such that (1) holds for all x, y ∈ X with d(x, y) < ε.
• There exists x ∈ X such that d(x, Tx) < ε.

Then there exists z ∈ X such that z ∈ Tz.
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