AUTHOR FINAL VERSION

Journal of Mathematical Analysis and Applications, 343 (2008), 310-314.

ON THE CALCULATION OF THE JAMES CONSTANT OF LORENTZ SEQUENCE SPACES

KEN-ICHI MITANI, KICHI-SUKE SAITO, AND TOMONARI SUZUKI

Abstract

In [M. Kato and L. Maligranda, On James and Jordan-von Neumann constants of Lorentz sequence spaces, J. Math. Anal. Appl., 258(2001), 457-465], the James constant of the 2-dimensional Lorentz sequence space $d^{(2)}(\omega, q)$ is computed in the case where $2 \leq q<\infty$. It is an open problem to compute it in the case where $1 \leq q<2$. In this paper, we completely determine the James constant of $d^{(2)}(\omega, q)$ in the case where $1 \leq q<2$.

1. Introduction and preliminaries

The notion of the James constant (or the non-square constant in the sense of James) of Banach spaces was introduced by Gao and Lau [4], and recently it has been studied by several authors (cf. [3, 4, 5, 6], etc.). The James constant $J(X)$ of a Banach space X is defined by

$$
J(X)=\sup \left\{\min (\|x+y\|,\|x-y\|): x, y \in S_{X}\right\}
$$

where $S_{X}=\{x \in X:\|x\|=1\}$. From [4], we have $\sqrt{2} \leq J(X) \leq 2$ for any Banach space X, and $J(X)=\sqrt{2}$ if X is a Hilbert space. Clearly, we have that $J(X)<2$ if and only if X is uniformly non-square, that is, there exists a $\delta>0$ such that $\|(x-y) / 2\| \geq 1-\delta, x, y \in S_{X}$ imply $\|(x+y) / 2\| \leq 1-\delta$. They also calculated the James constant of L_{p} spaces, as follows: If $1 \leq p \leq \infty$ and $\operatorname{dim} L_{p} \geq 2$, then

$$
J\left(L_{p}\right)=\max \left\{2^{1 / p}, 2^{1 / p^{\prime}}\right\}
$$

where $1 / p+1 / p^{\prime}=1$. For some other results concerning the modulus of convexity, the James constant and the normal structure, we refer the reader to [3, 5].

For $0<\omega<1$ and $1 \leq q<\infty$, the 2-dimensional Lorentz sequence space $d^{(2)}(\omega, q)$ is \mathbb{R}^{2} with the norm

$$
\|x\|_{\omega, q}=\left(x_{1}^{* q}+\omega x_{2}^{* q}\right)^{1 / q}, \quad x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
$$

where $\left(x_{1}^{*}, x_{2}^{*}\right)$ is the nonincreasing rearrangement of $\left(\left|x_{1}\right|,\left|x_{2}\right|\right)$; that is, $x_{1}^{*}=\max \left\{\left|x_{1}\right|\right.$, $\left.\left|x_{2}\right|\right\}$ and $x_{2}^{*}=\min \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}$. Kato and Maligranda [6] considered the James constant of $d^{(2)}(\omega, q)$ and calculated it in the case where $q \geq 2$. That is, if $q \geq 2$, then

$$
J\left(d^{(2)}(\omega, q)\right)=2\left(\frac{1}{1+\omega}\right)^{1 / q}
$$

[^0]As in [6, Problem 1], it is an open problem to calculate it in the case where $1 \leq q<2$. In [7], the first and the second authors proved that, if $1 \leq q<2$ and $0<\omega \leq-1+\sqrt{2}$, then

$$
J\left(d^{(2)}(\omega, q)\right)=2\left(\frac{1}{1+\omega}\right)^{1 / q}
$$

Further, in [9], the third author, Yamano and Kato attempted to cover a part of the unknown case.

In this paper we completely determine the James constant of $d^{(2)}(\omega, q)$ in the case where $1 \leq q<2$.
To do it, we need some preliminaries. A norm $\|\cdot\|$ on \mathbb{R}^{2} is said to be absolute if $\|(x, y)\|=\|(|x|,|y|)\|$ for all $x, y \in \mathbb{R}$, and normalized if $\|(1,0)\|=\|(0,1)\|=1$. Let $A N_{2}$ be the family of all absolute normalized norms on \mathbb{R}^{2}, and let Ψ_{2} be the family of all continuous convex functions on $[0,1]$ such that $\psi(0)=\psi(1)=1$ and $\max \{1-t, t\} \leq \psi(t) \leq 1(0 \leq t \leq 1)$. As in $[2,8], A N_{2}$ and Ψ_{2} are in a one-one correspondence under the equation $\psi(t)=\|(1-t, t)\|(0 \leq t \leq 1)$. Let $\|\cdot\|_{\psi}$ be the absolute norm which corresponds to ψ, that is, for all $\psi \in \Psi_{2}$, let

$$
\|(x, y)\|_{\psi}= \begin{cases}(|x|+|y|) \psi\left(\frac{|y|}{|x|+|y|}\right) & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

We recall that an absolute normalized norm $\|\cdot\|$ on \mathbb{R}^{2} is symmetric in the sense that $\|(x, y)\|=\|(y, x)\|$ for all $x, y \in \mathbb{R}$ if and only if the corresponding function ψ is symmetric with respect to $t=1 / 2$ (see [8]).

For a norm $\|\cdot\|$ on \mathbb{R}^{2}, we write $J(\|\cdot\|)$ for $J\left(\left(\mathbb{R}^{2},\|\cdot\|\right)\right)$. In [7], we characterized the James constant of $\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)$ in terms of ψ. That is,

Theorem 1 (Mitani and Saito [7]). Let $\psi \in \Psi_{2}$. If ψ is symmetric with respect to $t=1 / 2$, then

$$
J\left(\|\cdot\|_{\psi}\right)=\max _{0 \leq t \leq 1 / 2} \frac{2-2 t}{\psi(t)} \psi\left(\frac{1}{2-2 t}\right) .
$$

Note here that the norm $\|\cdot\|_{\omega, q}$ of $d^{(2)}(\omega, q)$ is a symmetric absolute normalized norm on \mathbb{R}^{2}, and the corresponding convex function is given by

$$
\psi_{\omega, q}(t)= \begin{cases}\left((1-t)^{q}+\omega t^{q}\right)^{1 / q} & \text { if } 0 \leq t \leq 1 / 2 \\ \left(t^{q}+\omega(1-t)^{q}\right)^{1 / q} & \text { if } 1 / 2 \leq t \leq 1\end{cases}
$$

Therefore we can give the James constant of $d^{(2)}(\omega, q)$ as follows:
Proposition 1. For $0<\omega<1$ and $1 \leq q<\infty$,

$$
J\left(d^{(2)}(\omega, q)\right)\left(=J\left(\|\cdot\|_{\psi_{\omega, q}}\right)\right)=\max _{0 \leq t \leq 1 / 2} \frac{2-2 t}{\psi_{\omega, q}(t)} \psi_{\omega, q}\left(\frac{1}{2-2 t}\right)
$$

holds.
Our aim in this paper is the following:

Theorem. Let $1 \leq q<2$. Then we have
(i) If $0<\omega \leq(\sqrt{2}-1)^{2-q}$, then

$$
J\left(d^{(2)}(\omega, q)\right)=2\left(\frac{1}{1+\omega}\right)^{1 / q}
$$

(ii) If $(\sqrt{2}-1)^{2-q}<\omega<1$, then there exists a unique solution s_{0} of the equation

$$
\left(1+s_{0}\right)^{q-1}\left(1-\omega s_{0}^{q-1}\right)=\omega\left(1-s_{0}\right)^{q-1}\left(1+\omega s_{0}^{q-1}\right), \quad 0<s_{0}<\omega^{1 /(2-q)} .
$$

(ii-a) If $(\sqrt{2}-1)^{2-q}<\omega \leq \sqrt{2}^{q}-1$, then

$$
J\left(d^{(2)}(\omega, q)\right)=\max \left\{\left(\frac{2\left(1+s_{0}\right)^{q-1}}{1+\omega s_{0}^{q-1}}\right)^{1 / q}, 2\left(\frac{1}{1+\omega}\right)^{1 / q}\right\} .
$$

(ii-b) If $\sqrt{2}^{q}-1<\omega<1$, then

$$
J\left(d^{(2)}(\omega, q)\right)=\left(\frac{2\left(1+s_{0}\right)^{q-1}}{1+\omega s_{0}^{q-1}}\right)^{1 / q}
$$

2. Proof of Theorem

We define a function f from $[0,1 / 2]$ into \mathbb{R} by

$$
f(t)=\frac{2-2 t}{\psi_{\omega, q}(t)} \psi_{\omega, q}\left(\frac{1}{2-2 t}\right)=\left(\frac{1+\omega(1-2 t)^{q}}{(1-t)^{q}+\omega t^{q}}\right)^{1 / q}
$$

for t with $0 \leq t \leq 1 / 2$. We also put

$$
g(s)=f\left(\frac{s}{1+s}\right)=\frac{\left((1+s)^{q}+\omega(1-s)^{q}\right)^{1 / q}}{\left(1+\omega s^{q}\right)^{1 / q}}
$$

for s with $0 \leq s \leq 1$. We note that $J\left(d^{(2)}(\omega, q)\right)=\max \{g(s): 0 \leq s \leq 1\}$, and we shall calculate the maximum of the function g. The derivative of g is

$$
\begin{aligned}
g^{\prime}(s) & =\frac{\left((1+s)^{q}+\omega(1-s)^{q}\right)^{1 / q-1}}{\left(1+\omega s^{q}\right)^{1 / q+1}} \\
& \times\left\{(1+s)^{q-1}\left(1-\omega s^{q-1}\right)-\omega(1-s)^{q-1}\left(1+\omega s^{q-1}\right)\right\} .
\end{aligned}
$$

We put $\alpha=q-1$ and define a function g_{1} from $[0,1]$ into \mathbb{R} by

$$
g_{1}(s)=(1+s)^{\alpha}\left(1-\omega s^{\alpha}\right)-\omega(1-s)^{\alpha}\left(1+\omega s^{\alpha}\right)
$$

for s with $0 \leq s \leq 1$. We also define

$$
g_{2}(s)=\log \left((1+s)^{\alpha}\left(1-\omega s^{\alpha}\right)\right)-\log \left(\omega(1-s)^{\alpha}\left(1+\omega s^{\alpha}\right)\right)
$$

for s with $0 \leq s \leq 1$. Note that for any $s, g_{2}(s) \geq 0$ if and only if $g^{\prime}(s) \geq 0$. Since

$$
g_{2}(s)=\alpha \log (1+s)+\log \left(1-\omega s^{\alpha}\right)-\log \omega-\alpha \log (1-s)-\log \left(1+\omega s^{\alpha}\right),
$$

we have $\lim _{s \rightarrow+0} g_{2}(s)=-\log \omega>0$ and $\lim _{s \rightarrow 1-0} g_{2}(s)=+\infty$. The derivative of g_{2} is

$$
g_{2}^{\prime}(s)=\frac{2 \alpha\left(1+\omega s^{\alpha+1}\right)\left(1-\omega s^{\alpha-1}\right)}{(1-s)(1+s)\left(1+\omega s^{\alpha}\right)\left(1-\omega s^{\alpha}\right)} .
$$

Hence the function g_{2} has the minimum at $s=\omega^{1 /(1-\alpha)}$ and

$$
g_{2}\left(\omega^{1 /(1-\alpha)}\right)=(1-\alpha) \log \left(\frac{1-\omega^{1 /(1-\alpha)}}{\omega^{1 /(1-\alpha)}\left(1+\omega^{1 /(1-\alpha)}\right)}\right)
$$

Since $(1-u) / u(1+u) \geq 1(u>0) \Leftrightarrow 0<u \leq-1+\sqrt{2}$, it is easy to see that

$$
g^{\prime}\left(\omega^{1 /(1-\alpha)}\right) \geq 0 \Leftrightarrow g_{2}\left(\omega^{1 /(1-\alpha)}\right) \geq 0 \Leftrightarrow 0<\omega \leq(-1+\sqrt{2})^{2-q} .
$$

Hence if $0<\omega \leq(-1+\sqrt{2})^{2-q}$ then we have $g^{\prime}(s) \geq 0$ for all s, and so g is a nondecreasing function. Therefore we obtain

$$
J\left(d^{(2)}(\omega, q)\right)=\max \{g(s): 0 \leq s \leq 1\}=g(1)=2\left(\frac{1}{1+\omega}\right)^{1 / q}
$$

Let us consider the case $(-1+\sqrt{2})^{2-q}<\omega<1$. Since $g^{\prime}\left(\omega^{1 /(1-\alpha)}\right)<0$, by the following table, we can take s_{0}, s_{1} such that $g^{\prime}\left(s_{0}\right)=g^{\prime}\left(s_{1}\right)=0$ and $0<s_{0}<\omega^{1 /(1-\alpha)}<s_{1}<1$.

s	0		s_{0}		$\omega^{1 /(1-\alpha)}$		s_{1}		1
$g_{2}^{\prime}(s)$		-	-	-	0	+	+	+	
$g_{2}(s)$	+	\searrow	0	\searrow	-	\nearrow	0	\nearrow	∞
$g^{\prime}(s)$		+	0	-	-	-	0	+	
$g(s)$		\nearrow		\searrow		\searrow		\nearrow	

Since s_{0} is a relative maximum of the function g, we have

$$
J\left(d^{(2)}(\omega, q)\right)=\max \left\{g\left(s_{0}\right), g(1)\right\}
$$

Since $\left(1+s_{0}\right)^{q-1}\left(1-\omega s_{0}^{q-1}\right)=\omega\left(1-s_{0}\right)^{q-1}\left(1+\omega s_{0}^{q-1}\right)$ by $g^{\prime}\left(s_{0}\right)=0$, we have

$$
\begin{aligned}
& \left(\left(1+s_{0}\right)^{q}+\omega\left(1-s_{0}\right)^{q}\right)\left(1+\omega s_{0}^{q-1}\right) \\
= & \left(1+s_{0}\right)^{q}\left(1+\omega s_{0}^{q-1}\right)+\omega\left(1-s_{0}\right)^{q-1}\left(1+\omega s_{0}^{q-1}\right)\left(1-s_{0}\right) \\
= & \left(1+s_{0}\right)^{q}\left(1+\omega s_{0}^{q-1}\right)+\left(1+s_{0}\right)^{q-1}\left(1-\omega s_{0}^{q-1}\right)\left(1-s_{0}\right) \\
= & \left(1+s_{0}\right)^{q-1}\left\{\left(1+s_{0}\right)\left(1+\omega s_{0}^{q-1}\right)+\left(1-\omega s_{0}^{q-1}\right)\left(1-s_{0}\right)\right\} \\
= & 2\left(1+s_{0}\right)^{q-1}\left(1+\omega s_{0}^{q}\right) .
\end{aligned}
$$

Then we have

$$
g\left(s_{0}\right)=\left(\frac{\left(1+s_{0}\right)^{q}+\omega\left(1-s_{0}\right)^{q}}{1+\omega s_{0}^{q}}\right)^{1 / q}=\left(\frac{2\left(1+s_{0}\right)^{q-1}}{1+\omega s_{0}^{q-1}}\right)^{1 / q}
$$

Therefore we obtain

$$
J\left(d^{(2)}(\omega, q)\right)=\max \left\{\left(\frac{2\left(1+s_{0}\right)^{q-1}}{1+\omega s_{0}^{q-1}}\right)^{1 / q}, 2\left(\frac{1}{1+\omega}\right)^{1 / q}\right\} .
$$

It is easy to prove that $\omega>\sqrt{2}^{q}-1$ if and only if $\sqrt{2}>2\left(\frac{1}{1+\omega}\right)^{1 / q}$. Since $\sqrt{2} \leq J(X) \leq 2$ for any Banach space X, we have

$$
J\left(d^{(2)}(\omega, q)\right)=\left(\frac{2\left(1+s_{0}\right)^{q-1}}{1+\omega s_{0}^{q-1}}\right)^{1 / q}
$$

in the case where $\omega>\sqrt{2}^{q}-1$. This completes the proof.

References

[1] B. Beauzamy, "Introduction to Banach Spaces and Their Geometry, 2nd ed.," North-Holland, Amsterdam-New York-Oxford, 1985.
[2] F. F. Bonsall and J. Duncan, Numerical Ranges II, "London Math. Soc. Lecture Note Series," Vol. 10, 1973.
[3] E. Casini, About some parameters of normed linear spaces, Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat., 80 (1986), 11-15.
[4] J. Gao and K. S. Lau, On the geometry of spheres in normed linear spaces, J. Austral. Math. Soc., A 48 (1990), 101-112.
[5] M. Kato, L. Maligranda and Y. Takahashi, On James and Jordan-von Neumann constants and the normal structure coefficient of Banach spaces, Studia Math., 144 (2001), 275-295.
[6] M. Kato and L. Maligranda, On James and Jordan-von Neumann constants of Lorentz sequence spaces, J. Math. Anal. Appl., 258 (2001), 457-465.
[7] K. Mitani and K.-S. Saito, The James constant of absolute norms on \mathbb{R}^{2}, J. Nonlinear Convex Anal., 4 (2003), 399-410.
[8] K.-S. Saito, M. Kato and Y. Takahashi, Von Neumann-Jordan Constant of absolute normalized norms on \mathbb{C}^{2}, J. Math. Anal. Appl., 244 (2000), 515-532.
[9] T. Suzuki, A. Yamano and M. Kato, The James constant of 2-dimensional Lorentz sequence spaces, Bull. Kyushu Inst. Tech. Pure Appl. Math., 53(2006), 15-24.
(K.-I. Mitani) Nifgata Institute of Technology, Kashiwazaki, Niigata 945-1195, Japan E-mail address: mitani@adm.niit.ac.jp
(K.-S. Saito) Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181, Japan

E-mail address: saito@math.sc.niigata-u.ac.jp
(T. Suzuki) Department of Mathematics, Kyushu Institute of Technology, Kitakyushu 804-8550, JAPAN

E-mail address: suzuki-t@mns.kyutech.ac.jp

[^0]: 2000 Mathematics Subject Classification. 46B20. 46B25.
 Key words and phrases. James constant, Lorentz sequence space, absolute norm.
 The authors were supported in part by Grants-in-Aid for Scientific Research (No. 18540164, No. 18740075), Japan Society for the Promotion of Science.

