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ON THE CALCULATION OF THE JAMES CONSTANT OF
LORENTZ SEQUENCE SPACES

KEN-ICHI MITANI, KICHI-SUKE SAITO, AND TOMONARI SUZUKI

Abstract. In [M. Kato and L. Maligranda, On James and Jordan-von Neumann
constants of Lorentz sequence spaces, J. Math. Anal. Appl., 258(2001), 457–465], the
James constant of the 2-dimensional Lorentz sequence space d(2)(ω, q) is computed in
the case where 2 ≤ q < ∞. It is an open problem to compute it in the case where
1 ≤ q < 2. In this paper, we completely determine the James constant of d(2)(ω, q) in
the case where 1 ≤ q < 2.

1. Introduction and preliminaries

The notion of the James constant (or the non-square constant in the sense of James)
of Banach spaces was introduced by Gao and Lau [4], and recently it has been studied
by several authors (cf. [3, 4, 5, 6], etc.). The James constant J(X) of a Banach space
X is defined by

J(X) = sup
{

min
(||x + y||, ||x− y||) : x, y ∈ SX

}
,

where SX = {x ∈ X : ||x|| = 1}. From [4], we have
√

2 ≤ J(X) ≤ 2 for any
Banach space X, and J(X) =

√
2 if X is a Hilbert space. Clearly, we have that

J(X) < 2 if and only if X is uniformly non-square, that is, there exists a δ > 0 such
that ‖(x − y)/2‖ ≥ 1 − δ, x, y ∈ SX imply ‖(x + y)/2‖ ≤ 1 − δ. They also calculated
the James constant of Lp spaces, as follows: If 1 ≤ p ≤ ∞ and dim Lp ≥ 2, then

J(Lp) = max{21/p, 21/p′},
where 1/p + 1/p′ = 1. For some other results concerning the modulus of convexity, the
James constant and the normal structure, we refer the reader to [3, 5].

For 0 < ω < 1 and 1 ≤ q < ∞, the 2-dimensional Lorentz sequence space d(2)(ω, q) is
R2 with the norm

‖x‖ω,q = (x∗q1 + ωx∗q2 )1/q, x = (x1, x2) ∈ R2,

where (x∗1, x
∗
2) is the nonincreasing rearrangement of (|x1|, |x2|); that is, x∗1 = max{|x1|,

|x2|} and x∗2 = min{|x1|, |x2|}. Kato and Maligranda [6] considered the James constant
of d(2)(ω, q) and calculated it in the case where q ≥ 2. That is, if q ≥ 2, then

J
(
d(2)(ω, q)

)
= 2

(
1

1 + ω

)1/q

.
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As in [6, Problem 1], it is an open problem to calculate it in the case where 1 ≤ q < 2.
In [7], the first and the second authors proved that, if 1 ≤ q < 2 and 0 < ω ≤ −1 +

√
2,

then

J
(
d(2)(ω, q)

)
= 2

(
1

1 + ω

)1/q

.

Further, in [9], the third author, Yamano and Kato attempted to cover a part of the
unknown case.

In this paper we completely determine the James constant of d(2)(ω, q) in the case
where 1 ≤ q < 2.

To do it, we need some preliminaries. A norm ‖ · ‖ on R2 is said to be absolute
if ‖(x, y)‖ = ‖(|x|, |y|)‖ for all x, y ∈ R, and normalized if ‖(1, 0)‖ = ‖(0, 1)‖ = 1.
Let AN2 be the family of all absolute normalized norms on R2, and let Ψ2 be the
family of all continuous convex functions on [0, 1] such that ψ(0) = ψ(1) = 1 and
max{1 − t, t} ≤ ψ(t) ≤ 1 (0 ≤ t ≤ 1). As in [2, 8], AN2 and Ψ2 are in a one-one
correspondence under the equation ψ(t) = ‖(1 − t, t)‖ (0 ≤ t ≤ 1). Let ‖ · ‖ψ be the
absolute norm which corresponds to ψ, that is, for all ψ ∈ Ψ2, let

‖(x, y)‖ψ =





(|x|+ |y|)ψ
( |y|
|x|+ |y|

)
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

We recall that an absolute normalized norm ‖ · ‖ on R2 is symmetric in the sense
that ‖(x, y)‖ = ‖(y, x)‖ for all x, y ∈ R if and only if the corresponding function ψ is
symmetric with respect to t = 1/2 (see [8]).

For a norm ‖ · ‖ on R2, we write J
(‖ · ‖) for J

(
(R2, ‖ · ‖)). In [7], we characterized

the James constant of (R2, ‖ · ‖ψ) in terms of ψ. That is,

Theorem 1 (Mitani and Saito [7]). Let ψ ∈ Ψ2. If ψ is symmetric with respect to
t = 1/2, then

J
(‖ · ‖ψ

)
= max

0≤t≤1/2

2− 2t

ψ(t)
ψ

(
1

2− 2t

)
.

Note here that the norm ‖ · ‖ω,q of d(2)(ω, q) is a symmetric absolute normalized norm
on R2, and the corresponding convex function is given by

ψω,q(t) =

{ (
(1− t)q + ωtq

)1/q
if 0 ≤ t ≤ 1/2,

(
tq + ω(1− t)q

)1/q
if 1/2 ≤ t ≤ 1.

Therefore we can give the James constant of d(2)(ω, q) as follows:

Proposition 1. For 0 < ω < 1 and 1 ≤ q < ∞,

J
(
d(2)(ω, q)

)(
= J

(‖ · ‖ψω,q

))
= max

0≤t≤1/2

2− 2t

ψω,q(t)
ψω,q

(
1

2− 2t

)

holds.

Our aim in this paper is the following:
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Theorem. Let 1 ≤ q < 2. Then we have
(i) If 0 < ω ≤ (

√
2− 1)2−q, then

J
(
d(2)(ω, q)

)
= 2

(
1

1 + ω

)1/q

.

(ii) If (
√

2− 1)2−q < ω < 1, then there exists a unique solution s0 of the equation

(1 + s0)
q−1(1− ωsq−1

0 ) = ω(1− s0)
q−1(1 + ωsq−1

0 ), 0 < s0 < ω1/(2−q).

(ii-a) If (
√

2− 1)2−q < ω ≤ √
2

q − 1, then

J
(
d(2)(ω, q)

)
= max

{(
2(1 + s0)

q−1

1 + ωsq−1
0

)1/q

, 2

(
1

1 + ω

)1/q
}

.

(ii-b) If
√

2
q − 1 < ω < 1, then

J
(
d(2)(ω, q)

)
=

(
2(1 + s0)

q−1

1 + ωsq−1
0

)1/q

.

w = 1

w =
√

2− 1

w = 0
q = 1 q = 2

(i)

(ii-a)

(ii-b)
the graphs of
√

2
q − 1 (above) and

(
√

2− 1)2−q (below)
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2. Proof of Theorem

We define a function f from [0, 1/2] into R by

f(t) = 2−2t
ψω,q(t)

ψω,q

(
1

2−2t

)
=

(
1+ω(1−2t)q

(1−t)q+ωtq

)1/q

for t with 0 ≤ t ≤ 1/2. We also put

g(s) = f

(
s

1 + s

)
=

(
(1 + s)q + ω(1− s)q

)1/q

(1 + ωsq)1/q

for s with 0 ≤ s ≤ 1. We note that J
(
d(2)(ω, q)

)
= max{g(s) : 0 ≤ s ≤ 1}, and we shall

calculate the maximum of the function g. The derivative of g is

g′(s) =

(
(1 + s)q + ω(1− s)q

)1/q−1

(1 + ωsq)1/q+1

× {
(1 + s)q−1(1− ωsq−1)− ω(1− s)q−1(1 + ωsq−1)

}
.

We put α = q − 1 and define a function g1 from [0, 1] into R by

g1(s) = (1 + s)α(1− ωsα)− ω(1− s)α(1 + ωsα)
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for s with 0 ≤ s ≤ 1. We also define

g2(s) = log
(
(1 + s)α(1− ωsα)

)− log
(
ω(1− s)α(1 + ωsα)

)

for s with 0 ≤ s ≤ 1. Note that for any s, g2(s) ≥ 0 if and only if g′(s) ≥ 0. Since

g2(s) = α log(1 + s) + log(1− ωsα)− log ω − α log(1− s)− log(1 + ωsα),

we have lims→+0 g2(s) = − log ω > 0 and lims→1−0 g2(s) = +∞. The derivative of g2 is

g′2(s) = 2α(1+ωsα+1)(1−ωsα−1)
(1−s)(1+s)(1+ωsα)(1−ωsα)

.

Hence the function g2 has the minimum at s = ω1/(1−α) and

g2(ω
1/(1−α)) = (1− α) log

(
1− ω1/(1−α)

ω1/(1−α)
(
1 + ω1/(1−α)

)
)

.

Since (1− u)/u(1 + u) ≥ 1(u > 0) ⇔ 0 < u ≤ −1 +
√

2, it is easy to see that

g′(ω1/(1−α)) ≥ 0 ⇔ g2(ω
1/(1−α)) ≥ 0 ⇔ 0 < ω ≤ (−1 +

√
2)2−q.

Hence if 0 < ω ≤ (−1 +
√

2)2−q then we have g′(s) ≥ 0 for all s, and so g is a non-
decreasing function. Therefore we obtain

J
(
d(2)(ω, q)

)
= max{g(s) : 0 ≤ s ≤ 1} = g(1) = 2

(
1

1 + ω

)1/q

.

Let us consider the case (−1+
√

2)2−q < ω < 1. Since g′(ω1/(1−α)) < 0, by the following
table, we can take s0, s1 such that g′(s0) = g′(s1) = 0 and 0 < s0 < ω1/(1−α) < s1 < 1.

s 0 s0 ω1/(1−α) s1 1

g′2(s) − − − 0 + + +
g2(s) + ↘ 0 ↘ − ↗ 0 ↗ ∞
g′(s) + 0 − − − 0 +
g(s) ↗ ↘ ↘ ↗

Since s0 is a relative maximum of the function g, we have

J
(
d(2)(ω, q)

)
= max

{
g(s0), g(1)

}
.

Since (1 + s0)
q−1(1− ωsq−1

0 ) = ω(1− s0)
q−1(1 + ωsq−1

0 ) by g′(s0) = 0, we have
(
(1 + s0)

q + ω(1− s0)
q
)
(1 + ωsq−1

0 )

= (1 + s0)
q(1 + ωsq−1

0 ) + ω(1− s0)
q−1(1 + ωsq−1

0 )(1− s0)

= (1 + s0)
q(1 + ωsq−1

0 ) + (1 + s0)
q−1(1− ωsq−1

0 )(1− s0)

= (1 + s0)
q−1

{
(1 + s0)(1 + ωsq−1

0 ) + (1− ωsq−1
0 )(1− s0)

}

= 2(1 + s0)
q−1(1 + ωsq

0).

Then we have

g(s0) =

(
(1 + s0)

q + ω(1− s0)
q

1 + ωsq
0

)1/q

=

(
2(1 + s0)

q−1

1 + ωsq−1
0

)1/q

.
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Therefore we obtain

J
(
d(2)(ω, q)

)
= max

{(
2(1 + s0)

q−1

1 + ωsq−1
0

)1/q

, 2

(
1

1 + ω

)1/q
}

.

It is easy to prove that ω >
√

2
q−1 if and only if

√
2 > 2

(
1

1+ω

)1/q
. Since

√
2 ≤ J(X) ≤ 2

for any Banach space X, we have

J
(
d(2)(ω, q)

)
=

(
2(1 + s0)

q−1

1 + ωsq−1
0

)1/q

in the case where ω >
√

2
q − 1. This completes the proof.
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