論 T.

4ポート回路網を用いた屋内配電線から放射される磁界強度解析法

三吉 金吾† 桑原 伸夫^{†a)} 秋山 佳春†† 田島 公博^{††}

Analysis Method of Radiated Magnetic Field from Indoor AC Mains Line Using 4-Port Network

Kingo MIYOSHI[†], Nobuo KUWABARA^{†a)}, Yoshiharu AKIYAMA^{††}, and Kimihiro TAJIMA^{††}

あらまし 近年,ホームネットワークの需要が高まり,新たに伝送路を敷設する必要がない有線通信として電 力線通信が注目されている、しかし、配電線からの放射電磁界が他の通信に影響を与える可能性が懸念されてお り、放射電磁界強度を評価する必要がある。しかし、大地面を含む信号伝搬特性の精密な解析方法や分岐を含む 配電系から放射される電磁界解析方法が明らかになっていない、本論文では、屋内配電線を2導体と大地からな る4ポート回路網の縦続接続で表してコモンモード電流を求め、この値を用いて放射磁界強度を求める方法につ いて検討している。解析にあたっては、有限要素法と測定値を用いて導体間及び導体とグラウンド間のアドミタ ンスを求めることにより、コモンモード電流解析精度の改善が可能であることを示した.また、解析モデルの妥 当性を評価するため、電波暗室内で長さ4mのケーブルを用いて評価を行った結果、解析値と測定値の差は4dB 以内となり、この解析モデルにより分岐のない1本のケーブルからの放射磁界強度を解析できることが分かった. 次に、分岐を有する簡易配電線モデルに対して本解析手法を適用した結果、放射磁界強度の解析結果と測定結果 はほぼ一致し、本解析手法が、電子機器が接続されかつ分岐を有する配電線からの放射磁界強度の解析に有効で あることが分かった.

キーワード 電力線通信,屋内配電線,放射磁界,4ポート回路網

1. まえがき

近年, ADSL や FTTH などに代表される高速アク セスネットワークが整備され、今後は、家庭内のあら ゆる家電機器等がインターネットに接続されるホーム ネットワークの発展が予想される。ホームネットワー クを実現するための信号伝送媒体として、無線、UTP ケーブルなどが考えられるが、最近、屋内配電線を利用 する電力線通信 (PLC: Power Line Communication) が注目されている [1].

PLC には、既設の屋内配電線を伝送路として使用 できるためインフラ整備に必要な初期コストが不要で,

家庭のどこからでもネットワークに接続可能である等 の利点があるが、屋内配電線は本来高周波信号の伝送 を目的として設計されていないため、配電線からの放 射電磁界が無線通信や有線通信に影響を与えることが 懸念されている [2], [3].

こうした背景から, 配電線からの放射電磁界の検 討 [2]~[4], 配電線の平衡度の検討 [5], [6], 通信信号の 漏えい低減法の検討[7],誘導結合や伝導結合により UTP ケーブルを使用する有線通信に与える影響の検 討 [8], [9] 等が行われている.

放射電磁界に関しては既にモーメント法を用いた解 析が行われているが [4], 配電線に使用されている絶縁 体の影響や、端末に接続されている電子機器の取り扱 いが困難であるという問題点がある。そこで、伝送損 の小さい UTP ケーブルについては、ワイヤグリッド にコンデンサ等を挿入することにより模擬する方法が 提案されているが[10], 伝送損の大きい配電用ケーブ ルについては伝送損も考慮する必要があり、解析法は 明らかになっていない.

592

[†]九州工業大学工学部電気工学科,北九州市

Department of Electrical Engineering, Kyushu Institute of Technology, Kitakyushu-shi, 804-8550 Japan

^{*†} 日本電信電話株式会社 NTT 環境エネルギー研究所,武蔵野市 NTT Energy and Environment Systems Laboratories, NTT Corporation, 3-9-11 Midori-cho, Musashino-shi, 180-8585 Japan

a) E-mail: kuwabara.nobuo@buddy.elcs.kyutech.ac.jp

一方,4ポート回路網を用いてケーブル上のコモン モード電流を求め、これより放射電磁界を求める方 法が報告されている[5],[10]~[12].特に文献[5]では, 損失分や機器の入力インピーダンスを考慮したコモン モードインピーダンスや平衡度の解析を行っているが, 高い周波数で解析値と測定値が十分に一致しておらず, 放射電磁界強度を求めるためには解析精度の向上が必 要とされている.また,電力線は多くの分岐を有して いるので,分岐を含めた放射電磁界の解析が必要とさ れている.

本論文では,絶縁体や電子機器のモデル化が容易な 4ポート回路網を使用した放射磁界強度の解析方法に ついて述べている.まず,配電線上のコモンモード電 流を精度良く求めるための4ポート回路網パラメータ の決定方法について述べ,次に,この4ポート回路網 を用いて直線の配電線から放射される磁界強度を解析 して測定結果と比較している.最後に,四つの分岐を 有する簡易配電モデルから放射される磁界強度を解析 し,測定結果と比較している.

2. 電力線の解析モデル

2.1 グラウンド上にある電力線の4ポート回路網 プリント基板やワイヤから放射される電磁界の解析 には FDTD 法あるいはモーメント法がよく使用され ている、しかし、FDTD 法は多くのメモリと計算時間 を必要とし、電子機器等、周波数領域でパラメータが 決定される回路のモデル化が困難である。また、モー メント法は絶縁体の影響のモデル化が困難である.そ こで本論文では、4ポート回路網を用いた放射磁界の 解析方法を検討している。この方法は、ケーブルと大 地間の伝送モードとして TEM モードを仮定している ため、斜めや垂直の配線及び配線相互間の結合の取扱 いが難しいという問題点はあるが、解析に必要とする 計算機負荷が小さく、ケーブルの絶縁体や電子機器の 入力インピーダンス測定値をそのまま解析に使用で きる利点があり、配電線の入力ンピーダンス、平衡度 の解析 [5] や UTP ケーブルからの放射電磁界強度解 析[11],[12] に利用されている.

4ポート回路網を用いた放射磁界強度の基本解析モ デルを図1に示す.まず図に示すように、グラウン ド上に一対の送受信端末、1本の配電線 (AC mains cable) があるモデルを考える.そして、ケーブルの2 本の導体と大地で構成される伝送路の微小部分 (ΔL) を4ポート回路網で表す.次に、モデル全体をこの回

図 1 4 ポート回路網を用いた配電線からの放射磁界強度 解析の基本モデル

Fig. 1 Basic model for analyzing radiated magnetic field from indoor AC mains line.

路網の縦続接続と両端末を表す2ポート回路網で表し、 回路網をマトリックス演算により解くことでケーブル 導体上を流れる電流 I_{n1} , I_{n2} を求める. このときコ モンモード電流, I_{nc} は式(1)となる.

$$I_{nc} = I_{n1} + I_{n2} \tag{1}$$

得られたコモンモード電流から放射磁界強度は式 (2) となる [12].

$$\mathbf{H}_{\mathbf{i}} = \frac{1}{\mu} \nabla \times \mathbf{A} \tag{2}$$

ここで,

$$\mathbf{A} = \frac{\mu}{4\pi} \sum_{n=1}^{N} I_{nc} \frac{e^{-jkr_n}}{r_n} \mathbf{u_n}$$
(3)

である. ただし, μ :透磁率, r_n :n 番目の微小部分か ら観測点までの距離, k:波数, I_{nc} :n 番目の微小部 分のコモンモード電流, **A**:ベクトルポテンシャルで ある. また, u_n は n 番目の微小部分の電流ベクトル 方向を示す単位ベクトルであり, ここではケーブル導 体の物理的配置に沿って送信端末から受信端末を向く 方向の単位ベクトルである.

ケーブルが完全導体面上にあると仮定すると,磁 界強度は直接波 (i = d) とグラウンド面からの反射波 (i = r)の合成で与えられ

$$\mathbf{H} = \mathbf{H}_{\mathbf{d}} + \mathbf{H}_{\mathbf{r}} \tag{4}$$

である.

図1のような分岐のない4ポート回路網の縦続接 続上のコモンモード電流は文献[12]の方法で求めるこ とができ,分岐がある場合は文献[5]の方法を用いて, 分岐のない4ポート回路網の縦続接続に変換した後に 文献[12]の方法を適用して求めることができる.また, 電界強度もベクトルポテンシャルから求めることがで きる.

2.2 配電線の等価回路

屋内配電線の代表的なケーブルである VVF ケー ブルの断面形状を図 2 に示す. このケーブルは 2本 の導体が平行に配置されており,その周囲は絶縁体 (PVC) で覆われている. 図 2 の d_1 , d_2 , S_1 はケー - ブルの断面形状を決定するための基本的なパラメータ であり,本論文では代表的な値として, $d_1 = 1.6$ mm, $d_2 = 6.2$ mm, $S_1 = 3.2$ mm を使用している. h は ケーブルのグラウンド面からの高さであり,本論文で は導体の中心までの高さで規定している.

図 2 に示した配電線のグラウンドを含む微小区間に おける等価回路を図 3 に示す.この図において, R_1 , R_2 , L_1 , L_2 はそれぞれ導体の単位長当りの抵抗, イ ンダクタンスであり, M は導体間の相互インダクタ ンスである.図 2 に示すようにケーブルの周囲に磁 性体がないため,これらの値は理論式により算出でき る [11].

また,図3で C₁₁, C₁₂及び C₂₂ は単位長当りの 静電容量を示し,G₁₁,G₁₂及び G₂₂ は単位長当りの コンダクタンスである.従来これらの値は単位長当り

図 2 グラウンド上に配置された配電線の構造 Fig. 2 Configuration of AC mains cable above ground plane.

図 3 グラウンド上に配置された配電線の各微小区間にお ける等価回路

Fig. 3 Equivalent circuit for small segment of AC mains line above ground plane.

のインピーダンスを求め、単位長当りのインピーダン スとアドミタンスの積の平方根が、TEM モードの場 合は電磁波の伝搬速度になる [13] ことを利用して求め ていた.この場合、空間全体の等価比誘電率を求める 必要があり測定値に近い値が得られるよう定めた値を 用いていた.しかし、この方法では誤差が大きい、高 さごとに等価比誘電率を定める必要がある、などの問 題点があった.そこで、本論文では静電容量の解析に 実績がある有限要素法を用いてこれらの値を求めた. なお、計算にあたっては電磁界解析アプリケーション ツールであるマクスウェル 2D [14] を使用した.

2.3 絶縁体の比誘電率と誘電正接

静電容量を数値解析するためには絶縁体の比誘電率 と損失項に対応する誘電正接を求める必要がある.こ れらの値の入手は困難であるので,図2の断面形状に 基づいて有限要素法を用いて得た静電容量及びコンダ クタンスの計算値と単位長当りのアドミタンス測定値 がよく一致するときの値を用いた.なお単位長当りの アドミタンスの測定値は,長さ0.5mのVVFケーブ ルを用いてオープンショート法[15]により求めた.

測定値と解析値を比較することにより求めた比誘電 率と誘電正接を図4に示す.静電容量やコンダクタン スはグラウンド面の影響を受けるので,地上高を変化 させて測定を行い,これらの測定値より比誘電率と誘 電正接を求めている.図で,□はケーブル地上高0.8m の場合,△は地上高0.05mの場合である.これらの 値は,導体とグラウンド間がある等価的な誘電率をも つ誘電体で満たされていると仮定して,理論値[15]と 測定値を比較することにより求めた値である.図より, 比誘電率は周波数が高くなると減少し,測定を行った 0.3~30 MHz では15%程度減少すること,誘電正接

図 4 配電線の絶縁体の比誘電率と誘電正接 Fig. 4 Relative dielectric constant and loss tangent of plastic using AC mains cable.

も同様に減少し,測定を行った周波数範囲では 50%程 度減少することが分かる.また,ケーブル地上高の違いによる変化はどちらも 2%程度であり,周波数によ る変化に対して小さいことが分かる.

図の実線と破線は、図2の構造において数値解析に より求めた線間の容量とコンダクタンスと測定値を比 較して決定した比誘電率と誘電正接の値を示している. ケーブル地上高は0.8mである.図より周波数特性は よく一致しているが、比誘電率については導体周囲を 均質媒質と仮定して計算した値よりも10%程度大き く、誘電正接については5%程度小さいことが分かる.

本論文では図4に示した値のうち数値解析値と測定 値を比較することにより決定した比誘電率と誘電正接 の値を,導体間及び導体とグラウンド間の静電容量, コンダクタンスの解析に使用した.

2.4 導体とグラウンド間の静電容量

各導体とグラウンド間における単位長当りの静電 容量を図5に示す.ここで.□と△は有限要素法[14] により求めた解析値, ■と▲は理論式を用いた解析値 である.また,実線と破線は文献[5]に記載された方 法を用いた測定値であり、インピーダンスアナライザ (HP4194A)の平衡測定端子にケーブルを直接接続し てインピーダンスを測定し、導体間の容量及び導体と グラウンド間の容量を求めたものである. △と実線は ケーブル地上高が 0.05 m の場合, □と破線はケーブ ル地上高が 0.1 m の場合である. 図から分かるように. 有限要素法による解析値は両方のケーブル地上高にお いて測定値とほぼ一致しているが、理論式を用いた場 合は100%以上の誤差がある.これは、単位長当りの 容量を正しく計算するためには数値解析を行う必要が あることを示している. また図5より、比誘電率に周 波数特性があるにもかかわらず、単位長当りの容量が 周波数に対して変化しないことも分かる、これは各導 体とグラウンド間の容量は、各導体とグラウンド間に 存在する空気が支配的であることを意味している.

2.5 導体とグラウンド間のコンダクタンス

各導体とグラウンド間の単位長当りのコンダクタン スは図4に示す数値解析による誘電正接を用いて求め た.解析値と測定値を図6に示す.図で \Box と Δ は測定 値,実線と破線は解析値である.高さによる変化を考 慮し, h = 0.05 mの場合とh = 0.1 mの場合を示し ている.図より,測定値と解析値はよく一致し,コン ダクタンスは周波数が高くなるに従って大きくなるこ とが分かる.また,この値は図5の静電容量によるサ

図 6 各導体とグラウンド間コンダクタンスの測定値と解 析値

Fig. 6 Measured and calculated values of conductance between each conductor and ground plane.

セプタンス値の100分1以下であり、単位長当りのア ドミタンスに与える影響は短い線路では無視できるの で、本論文の今後の解析では単位長当りのコンダクタ ンス、G₁₁、G₂₂は考慮していない。

3. 解析モデルの評価

前章で求めた解析モデルの評価を行うため,コモン モード入力インピーダンス,放射磁界強度について測 定値と解析値の比較を行った.

3.1 コモンモード入力インピーダンス

解析モデルの妥当性を評価する項目として,導体上 を流れるコモンモード電流がある.コモンモード電流 は4ポート回路網を用いて解析されるので,放射磁界 強度の解析精度を評価する上で重要な項目である.本 論文では電流を測定する代わりに,電流と電圧の両方 が深くかかわっているコモンモード入力インピーダン スを測定して解析結果と比較を行った.

コモンモード入力インピーダンスの測定系を図7に

示す. 測定は長さ7m,幅6.2mの金属グラウンド面 上に、長さ4mの VVF ケーブルを高さ5cm に配置 して行った.ケーブル片端の導体間及び1導体とグラ ウンド間に抵抗を接続し、他方のケーブル端よりみた 導体間及び各導体とグラウンド間の入力インピーダン スから π 型等価回路を求め, 文献 [5] に記載された方 法によりコモンモード入力インピーダンスを求めた. このとき、インピーダンスの測定にはインピーダンス アナライザ及びインピーダンスプローブ (HP41941B) を用い、プローブをケーブルに接続するためにバラン を使用した. バランの影響に関しては、インピーダン スアナライザの校正機能を使用して, バラン平衡端子 側でオープン及びショートの校正を行うことにより補 正を行った.解析では図1のモデルを用い、ケーブル 部分については前章で決定した解析モデルを,受信端 については文献 [5] の方法により求めた2ポート回路 網を適用した.

コモンモード入力インピーダンスの測定結果を図8 に示す.縦軸はコモンモード入力インピーダンスの絶 対値で、〇は測定値、実線は絶縁体の影響を考慮して 数値解析により求めた静電容量を用いたときの解析

Fig. 9 Experimental setup for measuring radiated magnetic field.

値,破線は絶縁体の影響を考慮せず空間全体を等価的 な誘電体に置き換えて理論式により求めた静電容量を 用いたときの解析値[5]である.図から分かるように, 数値解析により求めた静電容量を用いた場合,0.3~ 30 MHz の範囲で測定値とよく一致しているが,理論 式により求めた静電容量を用いた場合は誤差が大きい. したがって導体とグラウンド間の静電容量を数値解析 で求めることにより,コモンモード電流の解析精度が 大きく改善されることが分かる.なお,図8において 10 MHz 付近及び18 MHz 付近でコモンモード入力イ ンピーダンスの値が極小値を示しているのは,ケーブ ル導体と大地で構成される伝送路の共振に起因するも のと考えられる.

有限要素法は誘電体を含む静電容量やコンダクタン スの解析に有効であることは広く知られている.しか し,解析を行うためには材料の情報が必要である.ま た,これまでの計算精度劣化の原因がこれらの解析精 度不足によるものであることは確認されていなかった. 2.及び本節で示された結果は,(1)線間アドミタンス の測定結果と有限要素法解析結果を比較しこれらがよ く一致する材料定数を選ぶことにより導体と大地間の アドミタンスも高い精度で解析可能となること.(2)解 析精度の劣化原因は導体と大地間のアドミタンスの解 析精度不足が明らかになったことを示している.

3.2 放射磁界強度

放射磁界強度の測定系を図9に示す.実験では,長さ 7m,幅6.2m,高さ5.9mで周波数帯域が30MHz~ 10GHzの電波半無響室を使用し,長さ4mのVVF ケーブルを高さ5cmに配置し,送信端末の代わりに 平衡端子側のインピーダンスが 100 Ω のバランを接続 し,受信端は図 9 と同様に抵抗で終端している.配 電系の平衡度が放射電磁界に影響することが報告さ れているので [2], [4],ここでは,片方の導体とグラウ ンド間の抵抗を 150 Ω , 1 k Ω , 3 k Ω と変化させてい る.このとき,平衡度を表す指標の一つである LCL (Longitudinal Conversion Loss) [5] は周波数特性を 有するが,低い周波数でのおよその値は,150 Ω の場 合で LCL = 20 dB, 1 k Ω の場合で LCL = 30 dB, 3 k Ω の場合で LCL = 40 dB である.解析ではバラ ンの 2 ポート回路網のパラメータと信号源の値は,文 献 [12] に従い 3 ポートの S パラメータ測定値より決 定した.これにより,バランの不平衡端子(一次)側 に,あるレベルの信号が印加されたときの磁界強度を 求めた.

磁界強度はループアンテナ(ローデシュワルツ EFH-Z2)を用いて、アンテナ中心とケーブル間の 水平距離1m,床面からアンテナの中心までの高さ 0.6mの位置で測定した.ネットワークアナライザ (HP8753D)の出力ボートをバランの不平衡端子に接続 続し、入力ポートをループアンテナの出力端子に接続 して S_{21} を測定している.測定周波数は 0.3~30 MHz である.測定ではこの S_{21} [dB]より、同軸ケーブルの 損失(L_{cable} [dB])、アンテナファクタ(AF [dB])を用 いて、式(5)より磁界強度(H [dB μ A/m])を求めた.

$$H = P_{in} + S_{21} + L_{cable} + 107 + AF \tag{5}$$

ここで, 107 [dB] は, 50Ω 系における電力 [dBm] と 電圧 [dBμV] の変換係数, *P_{in}* [dBm] はネットワーク アナライザの出力である.

なお、同軸ケーブルの損失は測定値を、ループアン テナのアンテナファクタはカタログに掲載されている 電界強度のアンテナファクタを自由空間のインピーダ ンスで割った値を適用した.

ケーブル近傍では磁界分布は複雑に変化するので *x*, *y*, *z*の各成分を測定する必要がある.しかし,図9に 示したようにケーブルに対して左右対称の位置にアン テナが設置されているので,ケーブル方向の磁界は理 論上非常に小さくなる.そこで,アンテナのループ面 がケーブルに対して平行となる場合と,ループ面がグ ラウンドに対して平行になる場合について磁界強度を 測定し,その合成磁界強度を求めて評価を行った.

放射磁界強度の測定値及び解析値の比較を図 10 に 示す.この図で,測定値はネットワークアナライザの

図 10 放射磁茶強度の測定値と解析値の比較 Fig. 10 Comparison of measured and calculated value of radiated magnetic field.

出力が 0 dBm のとき,解析値はバランの不平衡端子 の入力レベルが 0 dBm のときの放射磁界強度を示し ている.ネットワークアナライザとバランを接続する ケーブルの損失は 0.5 dB 以下のため両者に大きな違い はないので補正は行っていない.なお,出力レベルは スペクトルアナライザ (Advantest R3172)を用いて 確認した値である. 〇は導体とグラウンド間の終端イ ンピーダンスが 150 Ω の場合, △は 1 kΩ の場合,□ は 3 kΩ の場合の測定結果,実線,破線はそれぞれに 対応する解析結果である. 図から分かるように,LCL の値にかかわらず測定値と解析値はよく一致しており, 偏差は最大 4 dB である.

このことは、2. に示した解析モデルを用いて、放射 磁界強度の計算が可能であることを示している.また、 1 MHz 付近では、放射磁界強度は LCL によってほと んど変化しないことが分かる.これは周波数 1 MHz 以下の入力インピーダンスが高くコモンモード電流値 が小さいため、LCL の変化に伴うコモンモード電流 の変化が現れにくいことが原因であると考えられる.

複数の分岐をもつ配電線からの放射磁 界強度

前章において本論文の解析手法が単純なモデルに対 して適用可能であることを示した.しかし、実際の屋 内配電系には多数の分岐や折れ曲がりが存在する.こ こでは図1の回路モデルを用いて、四つの分岐をもつ 配電線からの放射磁界の解析を行った.

4.1 分岐のある配電系モデルの解析法

本論文で検討した屋内配電系モデルを図 11 に示す. これは床面積 40 m² 程度の集合住宅における屋内配電 線の1分岐を模擬しており,本線から四つのコンセン

図 11 四つの方岐をもう座内配電示モデル Fig. 11 Indoor AC mains line model with four branches.

トが分岐し,それらに合計5台の電子機器(CDプレ イヤー,炊飯器,電子レンジ,冷蔵庫及び扇風機)が 接続されている[5].各電子機器は,停止状態での入力 インピーダンス測定値より求めたL,C,Rで構成さ れる回路[5]で模擬し,公衆配電網は擬似電源回路網 (AMN)[16]で模擬した.また,各電子機器とAMN 間は地上高 0.05mに配置した VVF ケーブルにより 相互に接続されている.

測定では図 11 に示すモデルを長さ 29 m, 幅 15 m, 高さ 9 m の電波半無響室内の金属グラウンド面上に配 置し, AMN をバランで置き換え, ネットワークアナラ イザの出力ポートをバランの不平衡端子に, 入力ポー トをループアンテナの出力端子に接続して, x, y, z成 分を測定しその合成磁界強度を求めた. ループアンテ ナ中心のグラウンド面からの高さは 0.6 m とし, 図 11 に示すように 1 m おきにアンテナを移動させて測定を 行い, 測定点間を補間して磁界強度分布を求めた.

解析は図 11 のモデルについて, 配電線の4ポート 回路網を2.に示す方法で求め,電子機器やAMNは 文献[5]の方法により求めた.コモンモード電流分布 の解析方法を図 12 に示す.コモンモード電流分布は 文献[5]に示す方法により,分岐のない線路に変換す ることで求められる.しかし,この方法では1本の分 岐の電流しか求めることができない.そこで,図 12 に示すように,図 11 のモデルを五つのルートに分け てコモンモード電流を求めた.この場合,例えばルー ト1について見ると,本線の負荷側及びその他の分岐 は,ルート1に接続された負荷インピーダンスとして 取り扱う.各ルートで重複している部分については, どのルートを選んでも原理的には同じコモンモード電

図 12 分岐のある配電線のコモンモード電流計算方法

Fig. 12 Method of calculating common-mode current on indoor AC mains line model with branches.

流が得られるので、いずれかの値を使用できる.こう して得られたコモンモード電流分布より、図 12 の各 観測点における磁界強度のx,y,z成分を求め、それ らを用いて合成磁界強度を求めた.

4.2 磁界強度分布の解析結果

磁界強度分布の測定結果を図 13(a)に,解析結果を 図 13(b)に示す.多くの周波数において検討を行った が,ここでは検討例として 10 MHz の場合を示してい る. 図中で黒い太線はケーブルの位置を示している. 図に示したように、一番下の分岐付近を除いては、測 定値と解析値はほぼ一致しており、4ポート回路網を 用いた解析方法により、分岐のある配電系からの放射 磁界強度が解析可能であることが分かる.

分岐を有する線路の解析方法を明らかにすることは, 一般的な配電網から放射される電磁界の解析に必要で あるが、これまで、4ポート回路網を用いた解析法に ついては、(1) コモンモード電流を高い精度で解析で きなかった。(2)分岐を有する回路網のコモンモード 電流解析方法が明らかになっていなかった等の問題点 があり、精度の高い放射磁界強度の解析ができなかっ た、検討の結果、コモンモード電流の解析精度劣化原 因は導体間及び各導体と大地間のアドミタンス値の精 度不足によるものであり、この修正を行えば、直線の 線路では放射磁界強度の測定値と解析値の偏差が4dB 以内で得られることが分かった.また,分岐ごとに4 ポート回路網を組み直してコモンモード電流を解析す ることにより、網全体のコモンモード電流が解析可能 であり、これより全体の磁界分布を求めることが可能 であることが分かった.

なお,一番下の分岐付近における測定値と解析値の 不一致については,給電点に近いことによる影響が考 えられるが,原因の究明は今後の課題である.

5. む す び

屋内配電線から放射される磁界強度を4ポート回路 網により解析する方法について検討を行った.まず, 単位長当りのアドミタンス解析に有限要素法を用い, 解析に必要な比誘電率と誘電正接については線間アド ミタンスの解析結果と測定結果を比較することにより 求めた.この値を用いて各導体とグラウンド間の単位 長当りの静電容量とコンダクタンスを求め測定値と比 較した結果,両者はよく一致し,従来用いられていた 等価誘電率を用いる方法よりも高い精度で解析可能で あることが分かった.

次に,長さ4mのケーブルで構成される単純モデ ルについて,コモンモード入力インピーダンスと放射 磁界強度の解析値と測定値を比較した.コモンモード 入力インピーダンスについては,単位長当りのアドミ タンスを数値解析により求めた場合,等価誘電率を用 いる方法よりも測定値と解析値の誤差は非常に小さく なり,高い精度でコモンモード電流を求められること が分かった.また,磁界強度の測定値と解析値の差は 4dB以内であり、図9に示した1本のケーブルからの 磁界強度についても解析が可能であることが分かった.

最後に,実際の配電系への適用を想定して四つの分 岐をもつ配電系モデルに本解析手法を適用した.配電 系に接続される公衆配電網や電子機器は測定結果に基 づいて回路網モデルを作成して解析を行った.その結 果,解析値はほぼ測定値と一致し,図 11 に示した四 つの分岐を有しかつ電子機器が接続された配電系モデ ルの場合も,本論文で提案している解析手法が有効で あることが分かった.

これらの検討により,従来明らかになっていなかっ た,コモンモード電流の解析値と測定値の偏差の原因 は導体間及び各導体とグラウンド間のアドミタンスの 解析精度によるものであり,他には大きな要因はない ことが分かった.また,分岐ごとにコモンモード電流 を求めることにより,分岐のある配電線から放射され る磁界強度の解析が可能となった.これらの結果は実 際の配電系から放射される磁界強度の解析への応用が 期待される.

今後の課題として,解析精度の改善と更に複雑な実 際の配電系への適用性検討が考えられる.

謝辞 貴重な助言を頂いた九州工業大学工学部桑原 研究室各位に感謝します.また,本研究は文部科学省 の科研費 (16560341)の助成を得た.

文 献

- [1] http://www.homeplug.com/powerline/
- [2] 総務省, "高速電力線搬送通信と無線利用の共存について (案)," http://www.soumu.go.jp/s-news/2005/ 051021.html, Oct. 2005.
- [3] J.C. Richards, "Characterization of access broadband over power line (BPL) systems by measurements," 2005 IEEE International Symposium on EMC, pp.982-987, Chicago, Aug. 2005.
- [4] Y. Watanabe, M. Shigenaga, and M. Tokuda, "Electromagnetic field near power line for a power line communication system," 2004 International Symposium on EMC, pp.845-848, Sendai, June 2004.
- [5] M. Rashid, N. Kuwabara, M. Maki, Y. Akiyama, and H. Yamane, "Evaluation of longitudinal conversion loss (LCL) for indoor AC mains line," IEEE International Symposium on EMC, pp.771-776, Boston, Aug. 2003.
- [6] 神宝照司,西山富朗,前川浩二,石川直己,稲田 学,牧 昌弘,"既設住宅における電力線のLCLとコモンモードイ ンピーダンスの測定,"信学技報,EMCJ2005-70, April 2005.
- [7] Y. Khadour and H. Hirsch, "Reduction of the radiation in PLC system using a hybrid feeding," ICEMC 2002, pp.161-166, Bankok, July 2002.

秋山 佳春 (正員)

- [8] 下妻陽介,下塩義文,秋山佳春,桑原伸夫,"電力線搬送 通信信号が誘導により VDSL 通信に与える影響の研究," 信学論(B), vol.J89-B, no.4, pp.576-584, April 2006.
- [9] T. Tominaga, Y. Akiyama, H. Yamane, and N. Kuwabara, "Investigation of electromagnetic noise transmission characteristics from AC mains port to telecommunication port," Proc. 2003 IEEE International Symposium on EMC, pp.505-510, Boston, Aug. 2003.
- [10] 玉木寛人,石田康弘,桑原伸夫,"1 GHz 以上における UTP ケーブルからの放射電磁界解析に対する 4 ポート 回路網モデル適用性の検討,"信学技報,EMCJ2005-75, Sept. 2005.
- [11] 濱田清司,牧 昌弘,下塩義文,徳田正満,桑原伸夫,"平 衡度を考慮した解析法によるツイストペアケーブル放射電 磁界特性,"信学論(B), vol.J86-B, no.4, pp.703-713, April 2003.
- [12] S. Fujiishi, N. Kuwabara, and F. Amemiya, "Calculation of radiated field from UTP cable at high frequency using 4-port network model," 2004 EMC Europe, pp.570-575, Eindhoven, Sept. 2004.
- [13] C.R. Paul, Analysis of multi-conductor transmission lines, John Wiley & Sons, New York, 1994.
- [14] URL: http//www.ansoft.com/maxwellsv/
- [15] R. Croze and L. Simon (著),林 憲一(訳),有線電話 伝送工学線路理論, pp.28-33, 学献社, 1969.
- [16] IEC/CISPR Publication 22 fifth edition, "Information technology equipment -Radio disturbance characteristics -limits and methods of measurement," April 2005.

(平成 18 年 5 月 18 日受付, 10 月 27 日再受付)

三吉 金吾 (学生員)

平 17 九工大・電気卒.現在,同大大学 院修士課程在学中.屋内配電線から放射さ れる磁界強度解析法の研究に従事.

桑原 伸夫 (正員)

昭 50 静岡大・工・電子卒.昭 52 同大 大学院修士課程了.同年日本電信電話公社 (現 NTT)茨城電気通信研究所入所,以 来,通信システムの雷防護,光ケーブルの 信頼性評価,通信システムの EMC 評価, EMC における光計測技術等に関する研究・

開発に従事. 平 13 九工大. 通信 EMC の教育研究に従事. 現 在,九工大・工・教授. 博士 (工学). IEEE 会員.

田島 公博

昭 61 熊本大・電子卒.平元同大大学院修 士課程了.同年日本電信電話(株)通信網 総合研究所入所.以来,EMC光計測技術, 赤外線応用移動体通信システムの研究開発 等に従事.現在,NTT環境エネルギー研 究所主幹研究員,電磁環境技術グループグ

(正員)

平 2 電通大·電気通信卒. 同年日本電信

電話(株)通信網総合研究所入所,以来,

通信システムの EMC 評価対策に関する研

究・開発に従事.現在環境エネルギー研究

所電磁環境技術グループ主任研究員.

ループリーダー.