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Abstract

Concerning disruptive discharge in insulation, some statistical methods with the
step-up test procedure have been recently proposed. The present paper aims to
clarify the differences between the methods and the conventional methods provided
by International Electrotechnical Commission, and fairly evaluate their performance
in the mathematical or practical aspect. As a result, it is shown that depending on
the assumption of statistical independence, the successive discharge method or the
modified up-and-down method is the most practical.



1 Introduction

We are concerned with statistical methods dealing with disruptive discharge voltages in
insulation. The conventional methods are given by International Electrotechnical Com-
mission (IEC) [1]. On the other hand, two different types of methods have been recently
introduced or proposed in a series of papers [2–4]. Although only the two types of meth-
ods have been compared with in the papers, it is not clear whether the methods are
superior to the conventional methods provided by IEC or not. Hence, the present paper
aims to clarify the differences among them and fairly evaluate their performance in the
mathematical or practical aspect.

Three classes of disruptive discharge tests are provided by IEC (Appendix A in [1]). Of
them, the classes in which the test voltage level may increase until a disruptive discharge
occurs are up-and-down tests and successive discharge tests. One of the most important
differences between them is what is supposed to be statistically independent.

Incidentally, the two types of methods mentioned above are the step-up method (SM),
which has been originally proposed in [5], and the new step-up method (NSM). In the
methods, each result in voltage stress applications is supposed to be statistically inde-
pendent regardless of whether a disruptive discharge occurs or not. This assumption is
the same as that in the up-and-down tests. In spite of that, the test procedure for ob-
taining data is very similar to that in the successive discharge tests, where each result in
voltage stress applications is supposed to be statistically independent only if a disruptive
discharge occurs. Now, a question arises: “is the test procedure really appropriate on the
assumption?” The present paper considers this question.

In the sequel we will use the word “method” to mean a pair of a test procedure and
the way of analysis of test results, such as the up-and-down method (UM).

In Sections 2 and 3 we will introduce the UM, the successive discharge method and
the SM, and explain their differences clearly. In Sections 4 and 5 the SM and the UM or
the NSM and the new up-and-down method (NUM) will be compared in the asymptotic
or empirical errors. The modification of the UM and the SM will be considered in Section
6, and conclusions will be given in Section 7. An iterative formula to get estimates will
be shown in Appendix A.

2 Methods provided by IEC

Concerning the UM and the successive discharge method, we introduce the test proce-
dures, the likelihood methods and remarks.

2.1 Up-and-down method

The up-and-down 50% disruptive discharge voltage test is defined as follows ([1], p. 91).

i) Decide the first voltage level U1, a small amount ∆U and the total number N of
voltage stress applications.

ii) When a voltage stress is applied at the voltage level U1, if no disruptive discharge
occurs, set the next voltage level U2 at U1 + ∆U , otherwise set that at U1 − ∆U .

iii) Perform similar tests at the succeeding voltage levels U2, U3, . . . , UN .
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The likelihood function for the test is given as follows ([1], p. 99). Denote by di the
number of discharge found in a voltage application at a voltage level Ui. Since di = 1 or 0,
the number of withstand is given by 1− di at Ui. Hence, if F (U ; θ) is the discharge prob-
ability distribution function (θ denotes a vector of parameters), the likelihood function L
becomes:

L =
N∏

i=1

(
F (Ui; θ)

)di
(
1 − F (Ui; θ)

)1−di

. (1)

All the test results are expressed by U1, ∆U and {di}N
i=1. As seen in (1), each result

di in voltage stress applications is dealt with statistically independently.

2.2 Successive discharge method

The successive discharge test is defined as follows ([1], p. 91).

i) Continuously increase the test voltage on a test object until a disruptive discharge
occurs.

ii) Perform similar tests n times.

The likelihood function for the test is given as follows ([1], p. 101). Denote by Ũj the
voltage level at which a disruptive discharge occurs. If f(Ũ ; θ) is the discharge probability
density function, the likelihood function becomes:

L =
n∏

j=1

f(Ũj; θ). (2)

All the test results are expressed by {Ũj}n
j=1. As seen in (2), only voltage levels

Ũi’s at which disruptive discharges occur are dealt with statistically independently. The
other voltage levels Ui’s before disruptive discharges occur do not appear in (2). In other
words, it is assumed that disruptive discharge voltages on test objects are expressed by a
independent random variable Ũ , and Ũj is an approximation to a value that Ũ takes on.

For a normal distribution, for example, since f(Ũ ; θ) = exp[−(Ũ − µ)2/2σ2]/
√

2πσ
in (2), the estimates of the parameters µ and σ are the sample mean and the sample
standard deviation (Appendix A.3.3 in [1]).

3 Step-up method

Concerning the SM [2], we introduce the test procedure, the likelihood function and
remarks.

The test procedure proceeds as follows.

i) Decide the first voltage level U1, a small amount ∆U and a maximum number m
of voltage stress applications at a voltage level. Here, U1 should be sufficiently low
such that almost no disruptive discharge occurs at the level.

ii) If no disruptive discharge occurs when substantially equal voltage stresses are ap-
plied m times at the voltage level U1, set the next voltage level U2 at U1 +∆U . Sim-
ilarly increase the succeeding voltage levels U3, U4, . . . until a disruptive discharge
occurs.

2



iii) Perform ii) n times.

The likelihood function is given as follows. For the jth disruptive discharge (1 ≤ j ≤
n), denote by δj and mj an integer for which a disruptive discharge occurs at Uδj

and the
number of voltage stress applications at the level. The likelihood function becomes:

L =
n∏

j=1

F (Uδj
; θ)

(
1 − F (Uδj

; θ)
)mj−1

δj−1∏
k=1

(
1 − F (Uk; θ)

)m

 . (3)

All the test results are expressed by U1, ∆U and {(δj,mj)}n
j=1. As seen in (3), each

result (discharge or withstand) in voltage stress applications is dealt with statistically
independently. Hence, the assumption concerning statistical independence is the same as
that in the UM, not that in the successive discharge method. For this, the SM and the
successive discharge method are not comparable (Section 2 in [2]), while the SM and the
UM are comparable.

The UM has been proposed by Dixon and Mood [6] and they have given the following
explanation concerning U1: if U1 is poorly chosen, the early observations from U1 to
some Ui will be spent in getting from U1 to the region of the mean; they will obviously
contribute little to the more precise location of the mean.

According to this, the SM spends n times the labor of testing in the UM to obtain
almost valueless observations. Hence, our question in Section 1 arises here again. To seek
an answer, in the next section we will evaluate their performance.

4 Comparison of the methods

We first compare the SM and the UM in the asymptotic errors of parameter estimators,
and second investigate how many times an experimenter needs to test to obtain good
estimates whose errors are close to the asymptotic errors. In the sequel the discharge
probability distribution is supposed to be a normal distribution with mean µ and standard
deviation σ.

4.1 Asymptotic unit errors

We define the asymptotic unit errors of the maximum likelihood (ML) estimators of µ

and σ by
√

n(I−1)11 and
√

n(I−1)22, where I stands for the Fisher information matrix.

In order to seek the matrix, let us rewrite (3). Denote by λi and νi the total numbers of
discharges and withstands in the voltage applications at a voltage level Ui, respectively.
These are expressed by

λi =
n∑

j=1

Ii(δj), νi =
n∑

j=1

(
mĨi(δj) + (mj − 1)Ii(δj)

)
,

where Ii(k)
def
= 1 if i = k or 0 otherwise, and Ĩi(k)

def
= 1 if i < k or 0 otherwise. By utilizing

these expressions, we can obtain

L =
∏
i≥1

(
F (Ui; µ, σ)

)λi
(
1 − F (Ui; µ, σ)

)νi

(4)
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from (3).
Next, let us seek the Fisher information matrix for (4). Denote F (Ui; µ, σ), 1 − pi

and
∏i

k=1 qm
k by pi, qi and ri, respectively. In addition, introduce the following symbols:

xi
def
= (Ui − µ)/σ,

zi
def
=

1√
2π

exp

[
−x2

i

2

]
, Ai

def
=

[
1 xi

xi x2
i

]
.

From (4) the Fisher information matrix becomes:

I =
n

σ2

∑
i≥1

ri−1

(
m−1∑
k=0

qk
i

)
z2

i

piqi

Ai (5)

since the expectations E[λi] and E[νi] are expressed by

n∑
j=1

(
ri−1

m−1∑
k=0

qk
i pi

)
= nri−1(1 − qm

i ) (6)

and
n∑

j=1

(
mri + ri−1

m−1∑
k=0

kqk
i pi

)
= nri−1

m∑
k=1

qk
i , (7)

respectively. Concerning (5), let es(µ) be the asymptotic unit error of the ML estimator
of µ and es(σ) that of σ.

On the other hand, the Fisher information matrix for (1) becomes:

I =
1

σ2

N∑
i=1

i∑
k=−i

P [Īi(k) = 1]
z2

k

pkqk

Ak, (8)

where Īi(k)
def
= 1 if Ui = U1 + k∆U or 0 otherwise. (For details, see [7].) Similarly, let us

denote by eu(µ) and eu(σ) the asymptotic unit errors of the ML estimators concerning
(8).

Suppose that µ = 0 and σ = 1. We investigate the two cases, Case A: the mean falls
on a voltage level and Case B: the mean is midway between two voltage levels. In each
case, each graph of es(µ) and es(σ) in the interval of ∆U/σ from 0.2 to 4 keeps the same
shape if U1 ≤ µ − 3.5σ and m = 1. For this, we set m = 1 and U1 = maxi(µ − i∆U) or
maxi(µ− (i + 0.5)∆U) under the condition that U1 ≤ µ− 3.5σ. On the other hand, each
graph of eu(µ) and eu(σ) also keeps the same shape if N ≥ 40. This means the sample
size 40 is large enough for us to know how the errors asymptotically behave in the UM.
Thus, we set N = 40.

Finally, we obtain es(µ), eu(µ), es(σ) and eu(σ) in Figure 1. The thick or normal lines
correspond to the SM or the UM, respectively. Throughout the present paper, the solid
or dotted lines correspond to Case A or B, respectively.

The figure tells us that the SM is quite superior to the UM in the asymptotic unit
errors. Especially, it is remarkable that es(µ) and es(σ) are small, and in the interval of
∆U/σ from 0.2 to 1.8, each of them is almost the same in Cases A and B.
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Figure 1: Asymptotic unit errors of the SM or the UM

4.2 Evaluation in small samples

We have seen that the SM can provide asymptotically good estimations in the interval
[0.2, 1.8]. This is not, however, sufficient to approve the performance of the method. In
this subsection, let us evaluate the method in small samples by means of Monte Carlo
simulation.

We define the empirical unit error of an ML estimator by
√

n times its root mean
square error, and denote by ēs(µ) and ēs(σ) the empirical unit errors of µ and σ in the
SM. When n = 20 or 80, 10000 sets of independent pseudo-random samples are considered
for each value of ∆U/σ(= 0.2, 0.3, . . . 2.0).
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Figure 2: Empirical or asymptotic unit errors of the SM

Figure 2 gives ēs(µ) and ēs(σ) for n = 20, 80 as well as es(µ) and es(σ) for comparison.
The thick lines correspond to the asymptotical unit errors, and normal or gray lines
correspond to the empirical unit errors for n = 20 or 80, respectively. From the figure we
can see the following: when n = 20, the empirical unit errors go away from the asymptotic
unit errors as ∆U/σ becomes close to 2; when n = 80, the empirical unit errors are almost
the same as the asymptotic unit errors except ēs(σ) in Case A.

Next, let us seek the average of the number of voltage stress applications necessary to
obtain one disruptive discharge. By adding (6) and (7), substituting n = 1 into it and
taking a summation over possible values of i, we obtain the average:

∑
i≥1 ri−1(

∑m−1
k=0 qk

i ).
Table 1 shows its values when m = 1. From the table, for example, we can see that it
may be necessary to apply voltage stresses 272 times when n = 80 and ∆U/σ = 1.6 in
Case A.
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Table 1: Average number of voltage stress applications

∆U/σ 0.4 0.8 1.2 1.6 2.0
Case A 9.0 5.1 4.4 3.4 2.5
Case B 7.5 4.6 3.9 2.9 3.0

Summarizing what we have seen in this section, we can say that the SM is superior
to the UM in the asymptotic errors of the ML estimators, but it requires a much larger
number of voltage stress applications than the UM for a good estimation. Consequently,
the SM is less practical than the UM.

5 New step-up and new up-and-down methods

We have so far discussed the methods that deal with censored data ([8], p. 24) only.
If some data are given by observation values, however, more precise estimation can be
expected. Now, let us consider methods dealing with such data, which are called complete
data.

A counterpart of the SM or the UM that deals with complete data is the NSM or the
NUM [9]. In the test procedures, the difference between the NSM and the SM or the
NUM and the UM is only whether a voltage, say uj, at the moment when a disruptive
discharge occurs is supposed to be recorded or not.

5.1 Asymptotic unit errors

First, we introduce the likelihood function and seek the Fisher information matrix in the
NSM.

The likelihood function is given as follows [2]:

L =
n∏

j=1

f(uj; θ)
(
1 − F (Uδj

; θ)
)mj−1

δj−1∏
k=1

(
1 − F (Uk; θ)

)m

 . (9)

All the test results are expressed by U1, ∆U and {(δj,mj, uj)}n
j=1.

Let us seek the Fisher information matrix in the usual way. By remembering that F
is a normal distribution function with mean µ and standard deviation σ and rewriting (9)
similarly to (4), we obtain

L =
∏
i≥1


n∏

j=1

(
f(uj; µ, σ)

)Ii(δj)(
1 − F (Ui; µ, σ)

)νi

 . (10)

Here, note that the replacement of f(uj; µ, σ) with F (Ui; µ, σ) yields (4). When we intro-
duce

Bi
def
=

[
−xizi + pi −zi − x2

i zi

−zi − x2
i zi −xizi − x3

i zi + 2pi

]
,

the Fisher information matrix becomes:

I =
n

σ2

∑
i≥1

ri−1

(
m−1∑
k=0

qk
i

) (
z2

i

qi

Ai + Bi

)
(11)

6



since for θ1, θ2 ∈ {µ, σ}

E

[
Ii(δj)

∂2 ln f(uj; µ, σ)

∂θ1∂θ2

]
= P [Ii(δj) = 1]E

[
∂2 ln f(uj; µ, σ)

∂θ1∂θ2

∣∣∣∣∣ Ii(δj) = 1

]

= E[Ii(δj)]E

[
∂2 ln f(uj; µ, σ)

∂θ1∂θ2

∣∣∣∣∣ uj ≤ Ui

]
,

where P [·] and E[·|·] means a probability and a conditional expectation. We denote by
enu(µ) and enu(σ) the asymptotic unit errors of the ML estimators concerning (11).

Next, we show the likelihood function and the Fisher information matrix in the NUM.
The likelihood function is given as follows [9]:

L =
N∏

i=1

(
f(ui; θ)

)di
(
1 − F (Ui; θ)

)1−di

. (12)

The Fisher information matrix for this becomes:

I =
1

σ2

N∑
i=1

i∑
k=−i

P [Īi(k) = 1]

(
z2

k

qk

Ak + Bk

)
. (13)

(For details, see [7].) Similarly, let us denote by enu(µ) and enu(σ) the asymptotic unit
errors concerning (13).

It is remarkable that the expressions in the right-hand side of (5) and (11) or (8) and
(13) are the same except the difference between z2

i Ai/piqi and z2
i Ai/qi + Bi or z2

kAk/pkqk

and z2
kAk/qk + Bk.

Finally, when we set µ, σ, m, U1 and N as in Subsection 4.1, we obtain ens(µ), enu(µ),
ens(σ) and enu(σ) in Figure 3. The thick or normal lines correspond to the NSM or the
NUM, respectively.
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Figure 3: Asymptotic unit errors of the NSM or the NUM

The figure tells us that the NSM is superior to the NUM in the asymptotic unit errors,
and in the interval of ∆U/σ from 0.2 to 2.0, each of ens(µ) and ens(σ) is almost the same
in Cases A and B.

5.2 Evaluation in small samples

Let us evaluate the performance of the NSM in small samples by means of Monte Carlo
simulation. We denote by ēns(µ) and ēns(σ) the empirical unit errors of the ML estimators
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of µ and σ in the NSM. When n = 20, we consider 10000 sets of independent pseudo-
random samples for each simulation.

Figure 4 gives ēns(µ) and ēns(σ) as well as ens(µ) and ens(σ) for comparison. The thick
or normal lines correspond to the asymptotical or empirical unit errors, respectively. From
this we can see that the empirical unit errors are almost the same as the asymptotic unit
errors in the interval [0.2, 2.0]. Since n = 20, Table 1 tells us that it is necessary to apply
voltage stresses 50 or 60 times when ∆U/σ = 2.0.
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Figure 4: Empirical or asymptotic unit errors of the NSM

The summary of this section is as follows: the NSM is superior to the NUM in the
asymptotic errors; compared with the SM, it can reduce the number of voltage stress
applications necessary to attain the empirical unit errors as small as the asymptotic unit
errors. This is one of the virtues of including complete data.

In a realistic situation, however, it may be impossible to obtain all data as complete
data when disruptive discharges occur. This is because disruptive discharges do not always
occur on the front of the impulse, but often occur on the tail of that ([1], pp. 119-120).
When a disruptive discharge occurs on the tail, the data should not be regarded as a
complete datum. Consequently, the NSM and the NUM are not very practical.

6 Discussion

As expected, we have seen that complete data can lead to increasing the precision of
parameter estimation. In this section, thus, let us modify the UM and the SM by adopting
a disruptive discharge voltage as a complete datum only if a disruptive discharge occurs
on the head of the impulse. Then, let us call these methods in this case the modified
up-and-down method (MUM) and the modified step-up method (MSM).

6.1 Asymptotic unit errors

First, we seek the likelihood function and the Fisher information matrix in the MSM. The
likelihood function and the Fisher information matrix are sought as follows. For the jth
disruptive discharge (1 ≤ j ≤ n), define

τj
def
=

{
1 (it occurs on the tail),
0 (it occurs on the head).
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The likelihood function becomes:

L =
n∏

j=1

(
F (Uδj

; θ)
)τj

(
f(uj; θ)

)1−τj
(
1 − F (Uδj

; θ)
)mj−1

δj−1∏
k=1

(
1 − F (Uk; θ)

)m

 .

As in Subsection 5.1, this can be rewritten into

L =
∏
i≥1


n∏

j=1

((
F (Uδj

; µ, σ)
)τj

(
f(uj; µ, σ)

)1−τj
)Ii(δj)(

1 − F (Ui; µ, σ)
)νi

 . (14)

When we suppose that disruptive discharges occur on the tail independently of voltage
stress levels, we can set

P [τj = 1|Ii(δj) = 1] = γ,

where γ is a constant. By similar calculations to those in Subsection 5.1, the Fisher
information matrix for (14) is given as follows:

I =
n

σ2

∑
i≥1

ri−1

(
m−1∑
k=0

qk
i

)
Ci, (15)

where

Ci
def
=

(
(pi + γqi)z

2
i

piqi

Ai + (1 − γ)Bi

)
.

We denote by emu(µ) and emu(σ) the asymptotic unit errors of the ML estimators con-
cerning (15).

On the other hand, by similar calculations to those in the UM and the MSM, the
Fisher information matrix for the MUM becomes:

I =
1

σ2

N∑
i=1

i∑
k=−i

P [Īi(k) = 1]Ck. (16)

Let us denote by emu(µ) and emu(σ) the asymptotic unit errors concerning (16).
The following are remarkable:

• The expressions in the right-hand side of (5) and (15) or (8) and (16) are the same
except the difference between z2

i Ai/piqi and Ci or z2
kAk/pkqk and Ck.

• When γ = 1 or 0, (15) is equivalent to (5) or (11) while (16) is equivalent to (8) or
(13).

In addition to the setting of µ, σ, m, U1 and N in Subsection 4.1, we set γ = 0.3. Then,
Figure 5 gives ems(µ), emu(µ), ems(σ) and emu(σ). The thick or normal lines correspond
to the MSM or the MUM, respectively. The figure shows that the MSM is superior to the
MUM in the asymptotic unit errors, and in the interval of ∆U/σ from 0.2 to 2.0, each of
ems(µ) and ems(σ) is almost the same in Cases A and B.
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Figure 5: Asymptotic unit errors of the MSM or the MUM when γ = 0.3

6.2 Evaluation in small samples

We evaluate the performance of the MSM in small samples by means of Monte Carlo
simulation. We denote by ēms(µ) and ēms(σ) the empirical unit errors of the ML estimators
of µ and σ in the MSM. Under the setting that n = 20 and γ = 0.3, 10000 sets of
independent pseudo-random samples are considered for each simulation.

Figure 6 gives ēms(µ) and ēms(σ) as well as ems(µ) and ems(σ) for comparison. The
thick or normal lines correspond to the asymptotical or empirical unit errors, respectively.
From this we can see that the empirical unit errors are very close to the asymptotic unit
errors throughout the interval [0.2, 2.0]. Since n = 20, Table 1 tells us that it is necessary
to apply voltage stresses 50 or 60 times when ∆U/σ = 2.0.
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Figure 6: Empirical or asymptotic unit errors of the MSM when γ = 0.3

In this section we have considered a more realistic situation, that is, the case that
some disruptive discharges occur on the tail of of the impulse. As a result, we have seen
the following: the MSM is superior to the MUM in the asymptotic errors; compared with
the SM, it can reduce the number of voltage stress applications necessary to attain the
empirical unit errors as small as the asymptotic unit errors.

Incidentally, in order to decrease the number of voltage stress applications, it is con-
sidered to set n at a smaller number than 20. This can, however, often cause failure in
finding an ML estimates, even if we use the iterative formula in Appendix A, which has
good convergence property.
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7 Conclusions

First, we have stated that there are two kinds of assumptions in the statistical meth-
ods related to disruptive discharge: one supposes that all voltage stress applications are
statistically independent; the other supposes that only the disruptive discharge voltage ap-
plications are statistically independent. We should note that only the successive discharge
method is usable under the latter assumption, such as in the case of non-self-restoring
insulation.

Second, we have investigated the performance of the statistical methods under the
former assumption. The following facts have been disclosed.

• The asymptotical unit errors of the ML estimators in the SM are smaller than those
in the UM. In order to attain the empirical unit errors as small as them, however,
the SM demands a much larger number of voltage stress applications than 40, which
is sufficient in the UM.

• The asymptotical unit errors of the ML estimators in the NSM or MSM are smaller
than those in the NUM or MUM, too. For small empirical unit errors, the NSM or
the MSM demands a little larger number of voltage stress applications than 40 only
if ∆U/σ is chosen close to 2.0.

Hence, the step-up test procedure is not always vain even though it requires a start from
a sufficiently low voltage level on every subject under the statistical independence of all
voltage stress applications.

The test procedure is, however, very difficult to handle since U1 and ∆U should be
chosen properly to avoid increasing the number of voltage stress applications. In contrast,
the up-and-down test procedure allows us to chose U1 roughly since it automatically
concentrates testing near the mean. In addition, the MUM makes it possible to chose ∆U
roughly since the errors of the ML estimators are less sensitive to its value than the UM.
Consequently, the MUM is the most useful method under the statistical independence of
all voltage stress applications.

Appendix

A Iterative formula

We give an iterative formula to get the ML estimates of µ and σ in the MSM. Let nt and
w denote the number of disruptive discharges on the tails of impulses and the number
of withstands, respectively. Of all the voltage levels {Ui}w+n

i=1 , pick up the voltage levels
{U(i)}w

i=1 for withstands and {U(i)}w+nt
i=w+1 for discharges on the tail. On the other hand, of

all the discharge voltages {uj}n
j=1, pick up the discharge voltages on the head {u(j)}n−nt

j=1 .
Then, we can obtain the iterative formula

µ(k+1) =
1

w + n

{
(w + nt)µ

(k) +
n−nt∑
j=1

u(j)

}
+

(
σ(k)

)2

w + n

{
w∑

i=1

D
(k)
i −

w+nt∑
i=w+1

E
(k)
i

}
,

σ(k+1) =

 1

w + n

{
(w + nt)

(
(σ(k))2 + (∆µ

(k)
1 )2

)
+

n−nt∑
j=1

(u(j) − µ(k+1))2

}
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+

(
σ(k)

)2

w + n

(
w∑

i=1

(U(i) + ∆µ
(k)
2 )D

(k)
i −

w+nt∑
i=w+1

(U(i) + ∆µ
(k)
2 )E

(k)
i

) 
1/2

by utilizing the expectation-maximization algorithm [7,8]. Here,

D
(k)
i

def
=

f(U(i); µ
(k), σ(k))

1 − F (U(i); µ(k), σ(k))
, E

(k)
i

def
=

f(U(i); µ
(k), σ(k))

F (U(i); µ(k), σ(k))
,

∆µ
(k)
1

def
= µ(k) − µ(k+1), ∆µ

(k)
2

def
= µ(k) − 2µ(k+1).

When µ(0) and σ(0) are properly given, the formula provides two series of approximates
{µ(k)}k≥1 and {σ(k))}k≥1 to the ML estimates of µ and σ. Note that the formula gives
ML estimates in the SM if n = nt, and it gives ML estimates in the NSM if nt = 0.
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