ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文
  2. 4 自然科学

Graph Orientation to Maximize the Minimum Weighted Outdegree

http://hdl.handle.net/10228/0002000128
http://hdl.handle.net/10228/0002000128
b7aed9d3-f417-4fe9-9d62-820677de1fc2
名前 / ファイル ライセンス アクション
10347757.pdf 10347757.pdf (331 KB)
Item type 学術雑誌論文 = Journal Article(1)
公開日 2023-10-02
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
タイトル
タイトル Graph Orientation to Maximize the Minimum Weighted Outdegree
言語 en
その他のタイトル
その他のタイトル GRAPH ORIENTATION TO MAXIMIZE THE MINIMUM WEIGHTED OUTDEGREE
言語 en
言語
言語 eng
著者 Asahiro, Yuichi

× Asahiro, Yuichi

en Asahiro, Yuichi

Search repository
Jansson, Jesper

× Jansson, Jesper

en Jansson, Jesper

Search repository
宮野, 英次

× 宮野, 英次

WEKO 6037
e-Rad 10284548
Scopus著者ID 6603649200
ORCiD 0000-0002-4260-7818
九工大研究者情報 233

en Miyano, Eiji

ja 宮野, 英次

ja-Kana ミヤノ, エイジ


Search repository
Ono, Hirotaka

× Ono, Hirotaka

en Ono, Hirotaka

Search repository
抄録
内容記述タイプ Abstract
内容記述 We study a new variant of the graph orientation problem called MAXMINO where the input is an undirected, edge-weighted graph and the objective is to assign a direction to each edge so that the minimum weighted outdegree (taken over all vertices in the resulting directed graph) is maximized. All edge weights are assumed to be positive integers. This problem is closely related to the job scheduling on parallel machines, called the machine covering problem, where its goal is to assign jobs to parallel machines such that each machine is covered as much as possible. First, we prove that MAXMINO is strongly NP-hard and cannot be approximated within a ratio of 2 – ε for any constant ε > 0 in polynomial time unless P=NP, even if all edge weights belong to {1, 2}, every vertex has degree at most three, and the input graph is bipartite or planar. Next, we show how to solve MAXMINO exactly in polynomial time for the special case in which all edge weights are equal to 1. This technique gives us a simple polynomial-time wmaz/wmin-approximation algorithm for MAXMINO where wmax and wmin denote the maximum and minimum weights among all the input edges. Furthermore, we also observe that this approach yields an exact algorithm for the general case of MAXMINO whose running time is polynomial whenever the number of edges having weight larger than wmin is at most logarithmic in the number of vertices. Finally, we show that MAXMINO is solvable in polynomial time if the input is a cactus graph.
言語 en
書誌情報 en : International Journal of Foundations of Computer Science

巻 22, 号 03, p. 583-601, 発行日 2011
出版社
出版者 World Scientific Publishing
DOI
関連タイプ isVersionOf
識別子タイプ DOI
関連識別子 https://doi.org/10.1142/S0129054111008246
ISSN
収録物識別子タイプ PISSN
収録物識別子 0129-0541
ISSN
収録物識別子タイプ EISSN
収録物識別子 1793-6373
著作権関連情報
権利情報 Electronic version of an article published as International Journal of Foundations of Computer Science, VOL. 22, NO. 03 https://doi.org/10.1142/S0129054111008246 © copyright World Scientific Publishing Company, https://www.worldscientific.com/worldscinet/ijfcs.
キーワード
主題Scheme Other
主題 Graph orientation
キーワード
主題Scheme Other
主題 Approximation algorithm
キーワード
主題Scheme Other
主題 Hardness of approximation
キーワード
主題Scheme Other
主題 Scheduling
キーワード
主題Scheme Other
主題 Maximum flow
出版タイプ
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
査読の有無
値 yes
研究者情報
URL https://hyokadb02.jimu.kyutech.ac.jp/html/233_ja.html
戻る
0
views
See details
Views

Versions

Ver.1 2023-10-02 02:10:08.321176
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3