ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文
  2. 5 技術(工学)

Dataset Construction and Verification for Detecting Factual Inconsistency in Japanese Summarization

http://hdl.handle.net/10228/0002001155
http://hdl.handle.net/10228/0002001155
a9af61cc-ff85-4e4b-8c99-2cf453faf6cf
名前 / ファイル ライセンス アクション
10443066.pdf 10443066.pdf (424 KB)
Item type 共通アイテムタイプ(1)
公開日 2025-01-24
タイトル
タイトル Dataset Construction and Verification for Detecting Factual Inconsistency in Japanese Summarization
言語 en
著者 Iwamoto, Keisuke

× Iwamoto, Keisuke

en Iwamoto, Keisuke

Search repository
嶋田, 和孝

× 嶋田, 和孝

WEKO 13734
e-Rad_Researcher 50346863
Scopus著者ID 7403686923
九工大研究者情報 196

en Shimada, Kazutaka

ja 嶋田, 和孝

Search repository
著作権関連情報
権利情報 Copyright (c) 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
抄録
内容記述タイプ Abstract
内容記述 Abstractive document summarization is one of the most important tasks in natural language processing. Many approaches based on large language models have been proposed. However, it is known that the output of LLM often includes hallucinations, such as factual inconsistency. Therefore, detecting factual inconsistencies in a summary is one important task for summarization. One solution for the detection is to utilize machine learning techniques. In general, machine learning approaches require a large number of training data to generate a robust model. However, it is difficult automatically to collect article-summary pairs with factual inconsistency from the Web because hand-written summaries on the Web are usually correct. Moreover, some existing datasets are written in English. In this paper, we propose some approaches to construct Japanese datasets with factual inconsistency automatically. For this purpose, we utilize two approaches from previous studies: FactCC and SumFC. In addition, we propose a new approach to construct summaries with exaggerated expressions, as a variety of factual inconsistencies. We call the datasets JFactCC, JSumFC, and JExnoS. For JExnoS, we utilize a two-stage approach based on GPT-4 and BART for the generation of summaries with exaggerated expressions from correct article-summary pairs. We also verify the usefulness of each constructed dataset through an experiment about factual inconsistency detection with BERT.
言語 en
備考
内容記述タイプ Other
内容記述 2024 16th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), July 6 - 12, 2024, Takamatsu, Japan
言語 en
書誌情報 en : 2024 16th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)

p. 243-248, 発行日 2024-10-15
出版社
出版者 IEEE
キーワード
主題Scheme Other
主題 Factual inconsistency detection
キーワード
主題Scheme Other
主題 Dataset construction
キーワード
主題Scheme Other
主題 GPT-4
キーワード
主題Scheme Other
主題 BART
キーワード
主題Scheme Other
主題 BERT
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
出版タイプ
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
DOI
識別子タイプ DOI
関連識別子 https://doi.org/10.1109/IIAI-AAI63651.2024.00054
ISBN
識別子タイプ ISBN
関連識別子 979-8-3503-7790-3
会議記述
会議名 IIAI International Congress on Advanced Applied Informatics
言語 en
回次 16
開始年 2024
開始月 07
開始日 06
終了年 2024
終了月 07
終了日 12
査読の有無
値 yes
研究者情報
URL https://hyokadb02.jimu.kyutech.ac.jp/html/196_ja.html
論文ID(連携)
値 10443066
連携ID
値 12445
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-24 04:48:23.981370
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3