ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文
  2. 5 技術(工学)

Relabeling for Indoor Localization Using Stationary Beacons in Nursing Care Facilities

http://hdl.handle.net/10228/0002001229
http://hdl.handle.net/10228/0002001229
b63dd60e-cbe5-44a2-ac0f-ee0b549da4a0
名前 / ファイル ライセンス アクション
10403090.pdf 10403090.pdf (1.8 MB)
Item type 共通アイテムタイプ(1)
公開日 2025-02-04
タイトル
タイトル Relabeling for Indoor Localization Using Stationary Beacons in Nursing Care Facilities
言語 en
著者 Garcia, Christina

× Garcia, Christina

en Garcia, Christina

Search repository
井上, 創造

× 井上, 創造

WEKO 27425
e-Rad_Researcher 90346825
Scopus著者ID 9335840200
九工大研究者情報 140

en Inoue, Sozo

ja 井上, 創造

Search repository
著作権関連情報
権利情報 Copyright (c) 2024 by the authors. Licensee MDPI, Basel, Switzerland.
著作権関連情報
権利情報Resource https://creativecommons.org/licenses/by/4.0/
権利情報 This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
抄録
内容記述タイプ Abstract
内容記述 In this study, we propose an augmentation method for machine learning based on relabeling data in caregiving and nursing staff indoor localization with Bluetooth Low Energy (BLE) technology. Indoor localization is used to monitor staff-to-patient assistance in caregiving and to gain insights into workload management. However, improving accuracy is challenging when there is a limited amount of data available for training. In this paper, we propose a data augmentation method to reuse the Received Signal Strength (RSS) from different beacons by relabeling to the locations with less samples, resolving data imbalance. Standard deviation and Kullback–Leibler divergence between minority and majority classes are used to measure signal pattern to find matching beacons to relabel. By matching beacons between classes, two variations of relabeling are implemented, specifically full and partial matching. The performance is evaluated using the real-world dataset we collected for five days in a nursing care facility installed with 25 BLE beacons. A Random Forest model is utilized for location recognition, and performance is compared using the weighted F1-score to account for class imbalance. By increasing the beacon data with our proposed relabeling method for data augmentation, we achieve a higher minority class F1-score compared to augmentation with Random Sampling, Synthetic Minority Oversampling Technique (SMOTE) and Adaptive Synthetic Sampling (ADASYN). Our proposed method utilizes collected beacon data by leveraging majority class samples. Full matching demonstrated a 6 to 8% improvement from the original baseline overall weighted F1-score.
言語 en
書誌情報 en : Sensors

巻 24, 号 2, p. 319, 発行日 2024-01-05
出版社
出版者 MDPI
キーワード
主題Scheme Other
主題 oversampling
キーワード
主題Scheme Other
主題 data augmentation
キーワード
主題Scheme Other
主題 machine learning
キーワード
主題Scheme Other
主題 signal measurement
キーワード
主題Scheme Other
主題 signal pattern
キーワード
主題Scheme Other
主題 relabeling
キーワード
主題Scheme Other
主題 indoor localization
キーワード
主題Scheme Other
主題 beacon
キーワード
主題Scheme Other
主題 nursing care
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
DOI
識別子タイプ DOI
関連識別子 https://doi.org/10.3390/s24020319
ISSN
収録物識別子タイプ EISSN
収録物識別子 1424-8220
研究者情報
URL https://hyokadb02.jimu.kyutech.ac.jp/html/140_ja.html
論文ID(連携)
値 10403090
連携ID
値 12752
戻る
0
views
See details
Views

Versions

Ver.1 2025-02-04 07:23:25.664324
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3