WEKO3
アイテム
Relabeling for Indoor Localization Using Stationary Beacons in Nursing Care Facilities
http://hdl.handle.net/10228/0002001229
http://hdl.handle.net/10228/0002001229b63dd60e-cbe5-44a2-ac0f-ee0b549da4a0
| 名前 / ファイル | ライセンス | アクション |
|---|---|---|
|
|
|
| Item type | 共通アイテムタイプ(1) | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 公開日 | 2025-02-04 | |||||||||||
| タイトル | ||||||||||||
| タイトル | Relabeling for Indoor Localization Using Stationary Beacons in Nursing Care Facilities | |||||||||||
| 言語 | en | |||||||||||
| 著者 |
Garcia, Christina
× Garcia, Christina
× 井上, 創造
WEKO
27425
|
|||||||||||
| 著作権関連情報 | ||||||||||||
| 権利情報 | Copyright (c) 2024 by the authors. Licensee MDPI, Basel, Switzerland. | |||||||||||
| 著作権関連情報 | ||||||||||||
| 権利情報Resource | https://creativecommons.org/licenses/by/4.0/ | |||||||||||
| 権利情報 | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). | |||||||||||
| 抄録 | ||||||||||||
| 内容記述タイプ | Abstract | |||||||||||
| 内容記述 | In this study, we propose an augmentation method for machine learning based on relabeling data in caregiving and nursing staff indoor localization with Bluetooth Low Energy (BLE) technology. Indoor localization is used to monitor staff-to-patient assistance in caregiving and to gain insights into workload management. However, improving accuracy is challenging when there is a limited amount of data available for training. In this paper, we propose a data augmentation method to reuse the Received Signal Strength (RSS) from different beacons by relabeling to the locations with less samples, resolving data imbalance. Standard deviation and Kullback–Leibler divergence between minority and majority classes are used to measure signal pattern to find matching beacons to relabel. By matching beacons between classes, two variations of relabeling are implemented, specifically full and partial matching. The performance is evaluated using the real-world dataset we collected for five days in a nursing care facility installed with 25 BLE beacons. A Random Forest model is utilized for location recognition, and performance is compared using the weighted F1-score to account for class imbalance. By increasing the beacon data with our proposed relabeling method for data augmentation, we achieve a higher minority class F1-score compared to augmentation with Random Sampling, Synthetic Minority Oversampling Technique (SMOTE) and Adaptive Synthetic Sampling (ADASYN). Our proposed method utilizes collected beacon data by leveraging majority class samples. Full matching demonstrated a 6 to 8% improvement from the original baseline overall weighted F1-score. | |||||||||||
| 言語 | en | |||||||||||
| 書誌情報 |
en : Sensors 巻 24, 号 2, p. 319, 発行日 2024-01-05 |
|||||||||||
| 出版社 | ||||||||||||
| 出版者 | MDPI | |||||||||||
| キーワード | ||||||||||||
| 主題Scheme | Other | |||||||||||
| 主題 | oversampling | |||||||||||
| キーワード | ||||||||||||
| 主題Scheme | Other | |||||||||||
| 主題 | data augmentation | |||||||||||
| キーワード | ||||||||||||
| 主題Scheme | Other | |||||||||||
| 主題 | machine learning | |||||||||||
| キーワード | ||||||||||||
| 主題Scheme | Other | |||||||||||
| 主題 | signal measurement | |||||||||||
| キーワード | ||||||||||||
| 主題Scheme | Other | |||||||||||
| 主題 | signal pattern | |||||||||||
| キーワード | ||||||||||||
| 主題Scheme | Other | |||||||||||
| 主題 | relabeling | |||||||||||
| キーワード | ||||||||||||
| 主題Scheme | Other | |||||||||||
| 主題 | indoor localization | |||||||||||
| キーワード | ||||||||||||
| 主題Scheme | Other | |||||||||||
| 主題 | beacon | |||||||||||
| キーワード | ||||||||||||
| 主題Scheme | Other | |||||||||||
| 主題 | nursing care | |||||||||||
| 言語 | ||||||||||||
| 言語 | eng | |||||||||||
| 資源タイプ | ||||||||||||
| 資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||
| 資源タイプ | journal article | |||||||||||
| 出版タイプ | ||||||||||||
| 出版タイプ | VoR | |||||||||||
| 出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||||||||
| DOI | ||||||||||||
| 識別子タイプ | DOI | |||||||||||
| 関連識別子 | https://doi.org/10.3390/s24020319 | |||||||||||
| ISSN | ||||||||||||
| 収録物識別子タイプ | EISSN | |||||||||||
| 収録物識別子 | 1424-8220 | |||||||||||
| 研究者情報 | ||||||||||||
| URL | https://hyokadb02.jimu.kyutech.ac.jp/html/140_ja.html | |||||||||||
| 論文ID(連携) | ||||||||||||
| 値 | 10403090 | |||||||||||
| 連携ID | ||||||||||||
| 値 | 12752 | |||||||||||