ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文
  2. 5 技術(工学)

Summary of SHL Challenge 2024: Motion Sensor-based Locomotion and Transportation Mode Recognition in Missing Data Scenarios

http://hdl.handle.net/10228/0002001319
http://hdl.handle.net/10228/0002001319
faa8a8e4-c58c-4976-a0f5-0d29e6422ab1
名前 / ファイル ライセンス アクション
10448388.pdf 10448388.pdf (1.2 MB)
Item type 共通アイテムタイプ(1)
公開日 2025-02-14
タイトル
タイトル Summary of SHL Challenge 2024: Motion Sensor-based Locomotion and Transportation Mode Recognition in Missing Data Scenarios
言語 en
著者 Lin, Wang

× Lin, Wang

en Lin, Wang

Search repository
Mathias, Ciliberto

× Mathias, Ciliberto

en Mathias, Ciliberto

Search repository
Hristijan, Gjoreski

× Hristijan, Gjoreski

en Hristijan, Gjoreski

Search repository
Paula, Lago

× Paula, Lago

en Paula, Lago

Search repository
Kazuya, Murao

× Kazuya, Murao

en Kazuya, Murao

Search repository
大北, 剛

× 大北, 剛

WEKO 31118
Scopus著者ID 57196004948
ORCiD 0000-0002-1286-5496
九工大研究者情報 100001145

en Okita, Tsuyoshi

ja 大北, 剛

Search repository
Daniel, Roggen

× Daniel, Roggen

en Daniel, Roggen

Search repository
著作権関連情報
権利情報 Copyright (c) 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
抄録
内容記述タイプ Abstract
内容記述 The paper summarizes the contributions of participants to the sixth Sussex-Huawei Locomotion-Transportation (SHL) Recognition Challenge organized at the HASCA Workshop of UbiComp/ISWC 2024. The goal of this machine learning/data science challenge is to recognize eight locomotion and transportation activities (Still, Walk, Run, Bike, Bus, Car, Train, Subway) from the motion (accelerometer, gyroscope, magnetometer) sensor data of a smartphone in a way which is user-independent and smartphone position-independent, and as well robust to data missing during deployment. The training data of a 'train' user is available from smartphones placed at four body positions (Hand, Torso, Bag and Hips). The testing data originates from 'test' users with a smartphone placed at one of three body positions (Torso, Bag or Hips). In addition, the test data has one or multiple sensor modalities randomly missing from each time frame (5 seconds). Such a scenario may occur if a device turns on and off dynamically sensors to save power, or due to limited computational or memory capacity. We introduce the dataset used in the challenge and the protocol of the competition. We present a meta-analysis of the contributions from 7 submissions, their approaches, the software tools used, computational cost and the achieved results. Overall, one submission achieved an F1 score between 70% and 80%, two between 60% and 70%, three between 50% and 60%, and one below 50%. Finally, we present a baseline implementation addressing missing sensor modalities.
言語 en
備考
内容記述タイプ Other
内容記述 International joint conference on Pervasive and Ubiquitous Computing, UbiComp 2024, 5-9 October 2024, Melbourne, Australia
言語 en
書誌情報 en : UbiComp '24: Companion of the 2024 on ACM International Joint Conference on Pervasive and Ubiquitous Computing

p. 555-562, 発行日 2024-10-05
出版社
出版者 ACM
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
DOI
識別子タイプ DOI
関連識別子 https://doi.org/10.1145/3675094.3678456
ISBN
識別子タイプ ISBN
関連識別子 979-8-4007-1058-2/24/1
会議記述
会議名 International joint conference on Pervasive and Ubiquitous Computing, UbiComp 2024
言語 en
開始年 2024
開始月 10
開始日 05
終了年 2024
終了月 10
終了日 09
開催国 AUS
研究者情報
URL https://hyokadb02.jimu.kyutech.ac.jp/html/100001145_ja.html
論文ID(連携)
値 10448388
連携ID
値 12998
戻る
0
views
See details
Views

Versions

Ver.1 2025-02-14 06:17:38.119044
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3