ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文
  2. 5 技術(工学)

Conditional checkpoint selection strategy based on sentence structures for text to triple translation using BiLSTM encoder–decoder model

http://hdl.handle.net/10228/0002001336
http://hdl.handle.net/10228/0002001336
969bf1cd-df0b-4884-8a6f-0b4786097434
名前 / ファイル ライセンス アクション
C2S2_based_on_sentence_structure_for_T2T_using_BiLSTM_with_changes_highlighted.pdf C2S2_based_on_sentence_structure_for_T2T_using_BiLSTM_with_changes_highlighted.pdf (3 MB)
Item type 共通アイテムタイプ(1)
公開日 2025-02-17
タイトル
タイトル Conditional checkpoint selection strategy based on sentence structures for text to triple translation using BiLSTM encoder–decoder model
言語 en
著者 Shrivastava, Manu

× Shrivastava, Manu

en Shrivastava, Manu

Search repository
Shibata, Kosei

× Shibata, Kosei

en Shibata, Kosei

Search repository
我妻, 広明

× 我妻, 広明

WEKO 30799
e-Rad_Researcher 60392180
Scopus著者ID 6603005439
九工大研究者情報 358

en Wagatsuma, Hiroaki

ja 我妻, 広明

Search repository
著作権関連情報
権利情報 Copyright (c) The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024
著作権関連情報
権利情報 This is a post-peer-review, pre-copyedit version of an article published in International Journal of Data Science and Analytics. The final authenticated version is available online at: https://doi.org/10.1007/s41060-024-00672-0.
抄録
内容記述タイプ Abstract
内容記述 Understanding natural languages is one of the primary goals of artificial intelligence. Natural languages contain multiple clauses and long-term dependencies making them difficult for machines to understand, also sentences can have different types of dependency structures such as simple, compound, or complex which makes interpretation further difficult. One alternative way is to represent language using predicate logic which is easier for machines to understand. The task of manually converting language to predicate logic or ontologies can be cumbersome, but it can be automated using machine translation. For these ontologies to be effective the quality of translation should be good. In this research, we focus on analyzing the effect of sentence structure on machine translation quality, i.e., how the model performance is affected if the dataset is structurally skewed meaning it has sentences of similar structure more as compared to other structures. We further investigate the model learning behavior by performing statistical analysis on features learned by these models and understand the effects of sentence structure on these learned features. The statistical analysis helps us understand the distribution followed by the features and based on the insights gained we proposed a conditional checkpoint selection strategy centered on sentence structure along with utilizing Modified J-Divergence as a loss function for optimizing model performance for different sentence structures thus achieving better translation quality.
言語 en
書誌情報 en : International Journal of Data Science and Analytics

発行日 2024-10-30
出版社
出版者 Springer
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
出版タイプ
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
DOI
識別子タイプ DOI
関連識別子 https://doi.org/10.1007/s41060-024-00672-0
ISSN
収録物識別子タイプ PISSN
収録物識別子 2364-415X
ISSN
収録物識別子タイプ EISSN
収録物識別子 2364-4168
査読の有無
値 yes
研究者情報
URL https://hyokadb02.jimu.kyutech.ac.jp/html/358_ja.html
連携ID
値 13019
戻る
0
views
See details
Views

Versions

Ver.1 2025-02-17 06:53:52.097557
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3