ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学会・会議発表論文
  2. 学会・会議発表論文

Numerical simulation of deep reinforcement learning using self-referential holographic deep neural network

http://hdl.handle.net/10228/0002001766
http://hdl.handle.net/10228/0002001766
ad2ee200-b567-46e8-9b57-180a7c71bb88
名前 / ファイル ライセンス アクション
neuro_110.pdf neuro_110.pdf (333.7 KB)
Item type 共通アイテムタイプ(1)
公開日 2025-07-11
タイトル
タイトル Numerical simulation of deep reinforcement learning using self-referential holographic deep neural network
言語 en
著者 Tomioka, Rio

× Tomioka, Rio

en Tomioka, Rio

Search repository
高林, 正典

× 高林, 正典

WEKO 35482
e-Rad_Researcher 70636000
Scopus著者ID 24774164500
九工大研究者情報 100000508

ja 高林, 正典

en Takabayashi, Masanori

Search repository
抄録
内容記述タイプ Abstract
内容記述 Deep reinforcement learning (DRL) is an artificial intelligence that is capable of autonomous decision-making in complex situations through a complementary combination of deep neural networks (DNNs) and reinforcement learning (RL). The autonomy is based on the cooperation between RL, which explores adaptations through trial and error in the environment; database (DB), which stores experience; and DNN, which learns adaptive behavior from training on experience data. The cooperation has been successfully applied to tasks that must operate directly in the face of a complex world, such as robotics, Go AI, and data center cooling. Regarding DNNs, the advancement of applications and algorithms requires the improvement of energy efficiency. There are two approaches to address this issue. The first is based on the current mainstream of electronic digital computing, such as application-specific integrated circuits (ASICs) and field-programmable gate arrays (FPGAs). The second explores new computing paradigms not dependent on von Neumann architectures, such as the search for extreme performance using optical computing. Although ASIC- and FPGA-based approaches have been studied for DNNs used in DRLs named q-networks [1,2], to the best of the authors' knowledge, there is no research on non-von Neumann computing. Here, we focus on self-referential holography (SRH) [3], an optoelectronic technology that implements two functions, as large-scale DB and DNNs exploiting the spatial parallelism of light, in a single system. In this study, we numerically investigate the feasibility of q-networks based on self-referential holographic DNN (SR-HDNN) [4].
言語 en
備考
内容記述タイプ Other
内容記述 International Workshop on Holography and Related Technologies 2024 (IWH 2024) , December 10-12, 2024, Hawaii, USA
言語 en
書誌情報 en : International Workshop on Holography and Related Technologies 2024 (IWH 2024) Technical Digest

発行日 2024-12
出版社
出版者 日本光学会
言語 ja
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
会議記述
会議名 International Workshop on Holography and Related Technologies 2024 (IWH 2024)
言語 en
開始年 2024
開始月 12
開始日 10
終了年 2024
終了月 12
終了日 12
開催地 Hawaii
言語 en
開催国 USA
研究者情報
URL https://hyokadb02.jimu.kyutech.ac.jp/html/100000508_ja.html
連携ID
値 14665
戻る
0
views
See details
Views

Versions

Ver.1 2025-07-11 12:00:05.999395
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3