WEKO3
アイテム
Detecting Advanced Persistent Threat Exfiltration with Ensemble Deep Learning Tree Models and Novel Detection Metrics
http://hdl.handle.net/10228/0002001922
http://hdl.handle.net/10228/00020019221235fc05-a31c-4a63-8cd0-d3e9ff489e52
| 名前 / ファイル | ライセンス | アクション |
|---|---|---|
|
|
|
| Item type | 共通アイテムタイプ(1) | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 公開日 | 2025-08-29 | |||||||||||||||
| タイトル | ||||||||||||||||
| タイトル | Detecting Advanced Persistent Threat Exfiltration with Ensemble Deep Learning Tree Models and Novel Detection Metrics | |||||||||||||||
| 言語 | en | |||||||||||||||
| 著者 |
Cai, Xiaojuan
× Cai, Xiaojuan
× 張, 海波
WEKO
35483
× Ahmed, Chuadhry Mujeeb
× Koide, Hiroshi
|
|||||||||||||||
| 著作権関連情報 | ||||||||||||||||
| 言語 | en | |||||||||||||||
| 権利情報Resource | https://creativecommons.org/licenses/by/4.0/ | |||||||||||||||
| 権利情報 | Copyright (c) 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ | |||||||||||||||
| 抄録 | ||||||||||||||||
| 内容記述タイプ | Abstract | |||||||||||||||
| 内容記述 | Advanced Persistent Threats (APTs) involve attackers maintaining a long-term presence on victim systems, leading to the stealthy exfiltration of sensitive data during network transfers. Despite existing methods to detect and halt APT data exfiltration, these attacks continue to pose significant threats to sensitive information and result in substantial commercial losses. Current approaches primarily focus on preemptive measures, which are insufficient once early-stage detection fails due to a lack of continuous monitoring. We propose an effective and efficient network monitoring method to address this gap and detect APT exfiltration during data transfer. Our approach assumes the presence of an undetected APT attacker within the victim system. We examine data exfiltration across three exfiltration traffic environments: exfiltration over command control channels, exfiltration over transfer size limitations, and their combinations. We introduce two detection metrics: Package Transfer Rate and Byte Transfer Rate. Utilizing these metrics, we measure network traffic, categorize APT attack environments, and train deep neural network models, named EDXGB, using ensembled decision trees to predict APT exfiltration. Our method is validated on two public datasets and compared against six baseline methods. Additionally, we simulate real-world exfiltration scenarios by creating three exfiltration traffic environments for each dataset. The results demonstrate that our method effectively detects APT exfiltration across various network environments, enhancing data protection and secure transfer. The code is open source and available at https://github.com/cxjuan/EDXGB-for-APT. | |||||||||||||||
| 言語 | en | |||||||||||||||
| 書誌情報 |
en : IEEE Access 巻 13, p. 81803-81822, 発行日 2025-01 |
|||||||||||||||
| 出版社 | ||||||||||||||||
| 出版者 | IEEE | |||||||||||||||
| 言語 | en | |||||||||||||||
| キーワード | ||||||||||||||||
| 言語 | en | |||||||||||||||
| 主題Scheme | Other | |||||||||||||||
| 主題 | Advanced persistent threat | |||||||||||||||
| キーワード | ||||||||||||||||
| 言語 | en | |||||||||||||||
| 主題Scheme | Other | |||||||||||||||
| 主題 | data exfiltration | |||||||||||||||
| キーワード | ||||||||||||||||
| 言語 | en | |||||||||||||||
| 主題Scheme | Other | |||||||||||||||
| 主題 | deep learning | |||||||||||||||
| キーワード | ||||||||||||||||
| 言語 | en | |||||||||||||||
| 主題Scheme | Other | |||||||||||||||
| 主題 | privacy preserving | |||||||||||||||
| 言語 | ||||||||||||||||
| 言語 | eng | |||||||||||||||
| 資源タイプ | ||||||||||||||||
| 資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||||||
| 資源タイプ | journal article | |||||||||||||||
| 出版タイプ | ||||||||||||||||
| 出版タイプ | VoR | |||||||||||||||
| 出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||||||||||||
| DOI | ||||||||||||||||
| 識別子タイプ | DOI | |||||||||||||||
| 関連識別子 | https://doi.org/10.1109/ACCESS.2025.3567772 | |||||||||||||||
| ISSN | ||||||||||||||||
| 収録物識別子タイプ | EISSN | |||||||||||||||
| 収録物識別子 | 2169-3536 | |||||||||||||||
| 研究者情報 | ||||||||||||||||
| URL | https://hyokadb02.jimu.kyutech.ac.jp/html/100001768_ja.html | |||||||||||||||
| 論文ID(連携) | ||||||||||||||||
| 値 | 10463076 | |||||||||||||||
| 連携ID | ||||||||||||||||
| 値 | 14945 | |||||||||||||||