@article{oai:kyutech.repo.nii.ac.jp:00000226, author = {Mito, Masaki and 美藤, 正樹 and Deguchi, Hiroyuki and 出口, 博之 and Tajiri, Takayuki and Takagi, Seishi and 高木, 精志 and Yamashita, Masahiro and Miyasaka, Hitoshi}, issue = {14}, journal = {Physical review. Third series. B, Condensed matter and materials physics}, month = {Oct}, note = {The single-chain magnet (SCM) system [Mn2(saltmen)2Ni(pao)2(L)2](A)2 (L: intrachain attaching ligand of NiII ion; A-1: interchain counteranion) is a ferromagnetic one-dimensional network system with repeating units of the MnIII-NiII-MnIII trimer which itself behaves as a single-molecule magnet with an S=3 spin ground state and negative uniaxial single-ion anisotropy (D) parallel to the bridging direction. The slow relaxation of the magnetic moment in this SCM system originates in an energy barrier for spin reversal (ΔE), which is closely related to the ferromagnetic interaction between the trimers (Jtrimer) as well as to the D of the trimer. We have investigated the effects of pressure on three compounds representative of the above SCM family through ac susceptibility measurements under hydrostatic pressures up to P=13.5 kbar and crystal structural analysis experiments up to P=20.0 kbar, and have observed a pronounced enlargement of ΔE when J was artificially increased. The application of hydrostatic pressure brought about the systematic enhancement of EΔ (a maximum increase of 10% within the pressure region of the experiments). The pressure dependence of EΔ varied according to the kind of attaching ligand L involved and the intrachain structure, and we have experimentally found that isotropic lattice shrinkage is desirable if a continuous increase of ΔE in this system is aimed at.}, pages = {144421-1--144421-9}, title = {Effect of pressure on single-chain magnets with repeating units of the MnIII-NiII-MnIII trimer}, volume = {72}, year = {2005}, yomi = {ミトウ, マサキ and デグチ, ヒロユキ and タカギ, セイシ} }