ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学位論文
  2. 学位論文

多様な生物学的データを複雑な代謝ネットワークに統合するための補完的エレメンタリーモード解析法の開発

https://doi.org/10.18997/00004238
https://doi.org/10.18997/00004238
58c0517d-707d-4ffa-b732-5d167f819fa8
名前 / ファイル ライセンス アクション
jou_k_299.pdf jou_k_299.pdf (2.4 MB)
Item type 学位論文 = Thesis or Dissertation(1)
公開日 2015-08-05
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_db06
資源タイプ doctoral thesis
タイトル
タイトル Development of Complementary Elementary ModeAnalysis for Integration of Heterogeneous Biological Data into a Complex Metabolic Network
言語 en
タイトル
タイトル 多様な生物学的データを複雑な代謝ネットワークに統合するための補完的エレメンタリーモード解析法の開発
言語 ja
言語
言語 eng
著者 Badsha, Md. Bahadur

× Badsha, Md. Bahadur

en Badsha, Md. Bahadur

Search repository
抄録
内容記述タイプ Abstract
内容記述 Systems biotechnology is an approach to develop comprehensive and ultimately predictive models of how components of a biological system reproduce its observed behavior. The major human diseases like as diabetes, obesity, high blood pressure, cardiovascular disease and cancer are involved in failure of human metabolic systems. Therefore, metabolism is an important biological process, but these are complex and highly interconnected each others. Metabolic network maps are represented by a complex chain of chemical reactions and are highly associated between genes, proteins and enzymes; consequently mathematical and/or computational approaches are necessary for integration of them. Heterogeneous biological data, including genome, transcriptome, proteome, and metabolome are integrated into a pathway-based metabolic model to predict a flux distribution of genetically modified cells under particular conditions. The integration of heterogeneous biological data and model building have become essential activities in biological research as technological advancements continue to empower the measurement of biological data of increasing diversity and scale. But the challenge becomes how to integrate this data to maximize the amount of useful biological information that can be extracted. Metabolic pathway analysis is theoretically effective in integrating heterogeneous biological data into metabolic network and to offer great opportunities for studying functional and structural properties of metabolic pathways. Metabolic pathway analysis has focused on two approaches, namely, elementary modes (EMs) and extreme pathways (Expas). EM analysis is potentially effective in integrating transcriptome or proteome data into metabolic network analyses and a minimal set of reactions that can maintain the steady state level, while Expa analysis is a subset of EM that contains two additional conditions and one of them condition to make all Expas systematically independent. The EM coefficients (EMCs) indicate the quantitative contribution of their associated EMs and that can be estimated by maximizing as a particular objective function. A serious problem of EM/ Expa analysis is that the computational time increases exponentially with an increase in network sizes, which makes the computation of the all EMs/Expas expensive and impracticable for large- or genome-scale networks. Another major problem is that many organisms still does not have provide any specific objective biological function for estimating the EMCs to predict the flux distribution relate to the optimum physiological states and EMs can be described by different scalar products or many possible vectors of each EM, but the predicted flux distributions must be independent of them. To address such aforementioned problems, in this thesis we present a fast and efficient algorithm, called complementary EM (cEM) analysis, to reduce the number of EMs/Expas. To achieve the computational time improvement, we employ the EM decomposition method that explores major EMs or linear combinations of them which are responsible for the metabolic flux distributions. Flux balance analysis (FBA) is used to generate many possible ranges of metabolic flux distributions as the input data, which is necessary for the EM decomposition method. The maximum entropy principle (MEP) is used as an objective function for estimating the coefficients of cEMs, to renounce the scalar product problem of EMs. MEP is widely used for flux prediction in particular cases where no biological objective function is available and most advantages that it does not depend on the scalar product of each EM. To demonstrate the feasibility of cEM analysis, we compared it with EM/Expa analysis by using a simulation study with an artificial metabolic network model and real metabolic network analysis by two medium-scale metabolic network model of E. coli and a genome scale model for head and neck cancer cells. The cEM analysis greatly reduces the number of EM, computational time and memory cost for the genome-scale metabolic network. Application of cEM analysis to Genetic Modification of Flux (GMF) accurately predicts the flux distributions of genetic mutants under particular conditions. Use of cEMs analysis, to plans a genetic engineering strategy for genome-scale metabolic network model for producing useful compounds.
目次
内容記述タイプ TableOfContents
内容記述 1 Introduction||2 Background||3 Materials and Methods||4 Results and Discussions||5 Conclusion, Scope and Future Research Interest
備考
内容記述タイプ Other
内容記述 九州工業大学博士学位論文 学位記番号:情工博甲第299号 学位授与年月日:平成27年3月25日
キーワード
主題Scheme Other
主題 Systems Biotechnology
キーワード
主題Scheme Other
主題 Integrating Biological Data
キーワード
主題Scheme Other
主題 Metabolic Modeling
キーワード
主題Scheme Other
主題 Large-Scale Metabolic Netwoek
キーワード
主題Scheme Other
主題 Comlementary Elementary Mode Analysis
キーワード
主題Scheme Other
主題 Prediction Speed and Accuracy
アドバイザー
倉田, 博之
学位授与番号
学位授与番号 甲第299号
学位名
学位名 博士(情報工学)
学位授与年月日
学位授与年月日 2015-03-25
学位授与機関
学位授与機関識別子Scheme kakenhi
学位授与機関識別子 17104
学位授与機関名 九州工業大学
学位授与年度
内容記述タイプ Other
内容記述 平成26年度
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
ID登録
ID登録 10.18997/00004238
ID登録タイプ JaLC
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 12:46:33.352184
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3