ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文
  2. 5 技術(工学)

Diffusion Model Based Spectral Clustering for Protein-Protein Interaction Networks

http://hdl.handle.net/10228/5575
http://hdl.handle.net/10228/5575
7d4d28ec-6693-4232-b31a-155475ced720
名前 / ファイル ライセンス アクション
journal.pone.0012623.pdf journal.pone.0012623.pdf (1.6 MB)
Item type 学術雑誌論文 = Journal Article(1)
公開日 2016-02-03
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
タイトル
タイトル Diffusion Model Based Spectral Clustering for Protein-Protein Interaction Networks
言語 en
言語
言語 eng
著者 Inoue, Kentaro

× Inoue, Kentaro

WEKO 15811

en Inoue, Kentaro

Search repository
Li, Weijiang

× Li, Weijiang

WEKO 15812

en Li, Weijiang

Search repository
倉田, 博之

× 倉田, 博之

WEKO 2130
e-Rad 90251371
Scopus著者ID 35482011000
九工大研究者情報 265

en Kurata, Hiroyuki

ja 倉田, 博之

ja-Kana クラタ, ヒロユキ


Search repository
抄録
内容記述タイプ Abstract
内容記述 BackgroundA goal of systems biology is to analyze large-scale molecular networks including gene expressions and protein-protein interactions, revealing the relationships between network structures and their biological functions. Dividing a protein-protein interaction (PPI) network into naturally grouped parts is an essential way to investigate the relationship between topology of networks and their functions. However, clear modular decomposition is often hard due to the heterogeneous or scale-free properties of PPI networks.Methodology/Principal FindingsTo address this problem, we propose a diffusion model-based spectral clustering algorithm, which analytically solves the cluster structure of PPI networks as a problem of random walks in the diffusion process in them. To cope with the heterogeneity of the networks, the power factor is introduced to adjust the diffusion matrix by weighting the transition (adjacency) matrix according to a node degree matrix. This algorithm is named adjustable diffusion matrix-based spectral clustering (ADMSC). To demonstrate the feasibility of ADMSC, we apply it to decomposition of a yeast PPI network, identifying biologically significant clusters with approximately equal size. Compared with other established algorithms, ADMSC facilitates clear and fast decomposition of PPI networks.Conclusions/SignificanceADMSC is proposed by introducing the power factor that adjusts the diffusion matrix to the heterogeneity of the PPI networks. ADMSC effectively partitions PPI networks into biologically significant clusters with almost equal sizes, while being very fast, robust and appealing simple.
言語 en
書誌情報 en : PLoS ONE

巻 5, 号 9, p. e12623, 発行日 2010-09-07
出版社
出版者 Public Library of Science
言語 en
DOI
関連タイプ isIdenticalTo
識別子タイプ DOI
関連識別子 https://doi.org/10.1371/journal.pone.0012623
ISSN
収録物識別子タイプ EISSN
収録物識別子 1932-6203
著作権関連情報
権利情報 Copyright (c) 2010 Inoue et al.
著作権関連情報
権利情報 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
査読の有無
値 yes
研究者情報
URL https://hyokadb02.jimu.kyutech.ac.jp/html/265_ja.html
連携ID
値 5312
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 13:11:04.839561
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3