{"created":"2023-05-15T11:58:45.587057+00:00","id":4910,"links":{},"metadata":{"_buckets":{"deposit":"4a75e55b-913c-47b7-a18f-18420ac88d0f"},"_deposit":{"created_by":3,"id":"4910","owners":[3],"pid":{"revision_id":0,"type":"depid","value":"4910"},"status":"published"},"_oai":{"id":"oai:kyutech.repo.nii.ac.jp:00004910","sets":["8:9"]},"author_link":["6429","19720","19718","19722","19717","19721"],"item_21_biblio_info_6":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2006-08-22","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"42","bibliographicPageEnd":"31667","bibliographicPageStart":"31659","bibliographicVolumeNumber":"281","bibliographic_titles":[{"bibliographic_title":"Journal of Biological Chemistry"}]}]},"item_21_description_4":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"Electrons utilized in the heme oxygenase (HO) reaction are provided by NADPH-cytochrome P450 reductase (CPR). To investigate the electron transfer pathway from CPR to HO, we examined the reactions of heme and verdoheme, the second intermediate in the heme degradation, complexed with rat HO-1 (rHO-1) using a rat FMN-depleted CPR; the FMN-depleted CPR was prepared by dialyzing the CPR mutant, Y140A/Y178A, against 2 M KBr. Degradation of heme in complex with rHO-1 did not occur with FMN-depleted CPR, notwithstanding that the FMN-depleted CPR was able to associate with the heme-rHO-1 complex with a binding affinity comparable with that of the wild-type CPR. Thus, the first electron to reduce the ferric iron of heme complexed with rHO-1 must be transferred from FMN. In contrast, verdoheme was converted to the ferric biliverdin-iron chelate with FMN-depleted CPR, and this conversion was inhibited by ferricyanide, indicating that electrons are certainly required for conversion of verdoheme to a ferric biliverdin-iron chelate and that they can be supplied from the FMN-depleted CPR through a pathway not involving FMN, probably via FAD. This conclusion was supported by the observation that verdoheme dimethyl esters were accumulated in the reaction of the ferriprotoporphyrin IX dimethyl ester-rHO-1 complex with the wild-type CPR. Ferric biliverdin-iron chelate, generated with the FMN-depleted CPR, was converted to biliverdin by the addition of the wild-type CPR or desferrioxamine. Thus, the final electron for reducing ferric biliverdin-iron chelate to release ferrous iron and biliverdin is apparently provided by the FMN of CPR.","subitem_description_type":"Abstract"}]},"item_21_description_60":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"subitem_description":"Journal Article","subitem_description_type":"Other"}]},"item_21_publisher_7":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"American Society for Biochemistry and Molecular Biology"}]},"item_21_relation_12":{"attribute_name":"DOI","attribute_value_mlt":[{"subitem_relation_type":"isIdenticalTo","subitem_relation_type_id":{"subitem_relation_type_id_text":"https://doi.org/10.1074/jbc.M606163200","subitem_relation_type_select":"DOI"}}]},"item_21_relation_14":{"attribute_name":"情報源","attribute_value_mlt":[{"subitem_relation_name":[{"subitem_relation_name_text":"http://www.jbc.org/content/281/42/31659.long"}],"subitem_relation_type_id":{"subitem_relation_type_id_text":"http://www.jbc.org/content/281/42/31659.long","subitem_relation_type_select":"URI"}}]},"item_21_rights_13":{"attribute_name":"権利","attribute_value_mlt":[{"subitem_rights":"American Society for Biochemistry and Molecular Biology"},{"subitem_rights":"This research was originally published in Journal of Biological Chemistry. Yuichiro Higashimoto, Hideaki Sato, Hiroshi Sakamoto, Kenichi Takahashi, Graham Palmer and Masato Noguchi. The Reactions of Heme- And Verdoheme-Heme Oxygenase-1 Complexes With FMN-depleted NADPH-cytochrome P450 Reductase : Electrons Required for Verdoheme Oxidation Can Be Transferred Through a Pathway Not Involving FMN. Journal of Biological Chemistry. 2006; 281:31659-31667. © The American Society for Biochemistry and Molecular Biology"}]},"item_21_select_59":{"attribute_name":"査読の有無","attribute_value_mlt":[{"subitem_select_item":"yes"}]},"item_21_source_id_8":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"0021-9258","subitem_source_identifier_type":"ISSN"}]},"item_21_text_36":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"Department of Medical Biochemistry, Kurume University School of Medicine"},{"subitem_text_value":"Department of Medical Biochemistry, Kurume University School of Medicine"},{"subitem_text_value":"Department of Bioscience and Bioinformatics, Kyushu Institute of Technology"},{"subitem_text_value":"Department of Medical Biochemistry, Kurume University School of Medicine"},{"subitem_text_value":"Department of Biochemistry and Cell Biology, Rice University"},{"subitem_text_value":"Department of Medical Biochemistry, Kurume University School of Medicine"}]},"item_21_text_63":{"attribute_name":"連携ID","attribute_value_mlt":[{"subitem_text_value":"602"}]},"item_21_version_type_58":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Higashimoto, Yuichiro"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Sato, Hideaki"}],"nameIdentifiers":[{}]},{"creatorAffiliations":[{"affiliationNameIdentifiers":[],"affiliationNames":[{"affiliationName":""}]}],"creatorNames":[{"creatorName":"Sakamoto, Hiroshi","creatorNameLang":"en"},{"creatorName":"坂本, 寛","creatorNameLang":"ja"},{"creatorName":"サカモト, ヒロシ","creatorNameLang":"ja-Kana"}],"familyNames":[{},{},{}],"givenNames":[{},{},{}],"nameIdentifiers":[{},{},{},{}]},{"creatorNames":[{"creatorName":"Takahashi, Kenichi"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Palmer, Graham"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Noguchi, Masato"}],"nameIdentifiers":[{}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2017-04-06"}],"displaytype":"detail","filename":"JBC281_31659.pdf","filesize":[{"value":"732.9 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"JBC281_31659.pdf","url":"https://kyutech.repo.nii.ac.jp/record/4910/files/JBC281_31659.pdf"},"version_id":"951f50d8-365e-4555-88fa-d2d27fa2884e"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"journal article","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"The Reactions of Heme- And Verdoheme-Heme Oxygenase-1 Complexes With FMN-depleted NADPH-cytochrome P450 Reductase : Electrons Required for Verdoheme Oxidation Can Be Transferred Through a Pathway Not Involving FMN","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"The Reactions of Heme- And Verdoheme-Heme Oxygenase-1 Complexes With FMN-depleted NADPH-cytochrome P450 Reductase : Electrons Required for Verdoheme Oxidation Can Be Transferred Through a Pathway Not Involving FMN"}]},"item_type_id":"21","owner":"3","path":["9"],"pubdate":{"attribute_name":"公開日","attribute_value":"2017-04-06"},"publish_date":"2017-04-06","publish_status":"0","recid":"4910","relation_version_is_last":true,"title":["The Reactions of Heme- And Verdoheme-Heme Oxygenase-1 Complexes With FMN-depleted NADPH-cytochrome P450 Reductase : Electrons Required for Verdoheme Oxidation Can Be Transferred Through a Pathway Not Involving FMN"],"weko_creator_id":"3","weko_shared_id":3},"updated":"2024-04-02T08:40:31.973513+00:00"}