@article{oai:kyutech.repo.nii.ac.jp:00006176, author = {酒井, 悠正 and Sakai, Hiromasa and Noda, Nao-Aki and 野田, 尚昭 and Sano, Yoshikazu and 佐野, 義一 and 張, 国偉 and Zhang, Guowei and Takase, Yasushi and 高瀬, 康}, issue = {4}, journal = {鉄と鋼, Tetsu-to-Hagane}, month = {Mar}, note = {The bimetallic work rolls are widely used in the roughing stands of hot rolling stand mills. The rolls are classified into two types; one is a single-solid type, and the other is a shrink-fitted assembled type consisting of a sleeve and a shaft. Regarding the assembled rolls, the interfacial creep sometimes appears between the shaft and the shrink-fitted sleeve. This interfacial creep means the relative displacement on the interface between the sleeve and the shaft. This creep phenomenon often causes damage to the roll such as shaft breakage due to fretting cracks. Although to clarify this creep mechanism is an important issue, experimental simulation is very difficult to be conducted. Since few studies are available, in this paper, the interfacial creep phenomenon is simulated by using the elastic finite element method (FEM) analysis. Here, the roll rotation is replaced by the road shift on the fixed roll surface. It is found that the interface creep can be explained as the accumulation of the relative circumferential displacement along the interface.}, pages = {411--417}, title = {スリーブ組立式圧延ロールの焼嵌め面に生じる界面クリープの数値シミュレーション}, volume = {105}, year = {2019}, yomi = {ノダ, ナオアキ and サノ, ヨシカズ and タカセ, ヤスシ} }