@article{oai:kyutech.repo.nii.ac.jp:00007002, author = {Kvashnin, Y. and VanGennep, D. and Mito, Masaki and 美藤, 正樹 and Medvedev, S. A. and Thiyagarajan, R. and Karis, O. and Vasiliev, A. N. and Eriksson, O. and Abdel-Hafiez, M.}, journal = {Physical Review Letters}, month = {Oct}, note = {The coexistence of charge density wave (CDW) and superconductivity in tantalum disulfide (2H−TaS2) at low temperature is boosted by applying hydrostatic pressures to study both vibrational and magnetic transport properties. Around Pc, we observe a superconducting dome with a maximum superconducting transition temperature Tc=9.1  K. First-principles calculations of the electronic structure predict that, under ambient conditions, the undistorted structure is characterized by a phonon instability at finite momentum close to the experimental CDW wave vector. Upon compression, this instability is found to disappear, indicating the suppression of CDW order. The calculations reveal an electronic topological transition (ETT), which occurs before the suppression of the phonon instability, suggesting that the ETT alone is not directly causing the structural change in the system. The temperature dependence of the first vortex penetration field has been experimentally obtained by two independent methods. While a d wave and single-gap BCS prediction cannot describe the lower critical field Hc1 data, the temperature dependence of the Hc1 can be well described by a single-gap anisotropic s-wave order parameter.}, pages = {186401-1--186401-6}, title = {Coexistence of Superconductivity and Charge Density Waves in Tantalum Disulfide: Experiment and Theory}, volume = {125}, year = {2020}, yomi = {ミトウ, マサキ} }