ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文
  2. 5 技術(工学)

Local Online Motor Babbling: Learning Motor Abundance of a Musculoskeletal Robot Arm

http://hdl.handle.net/10228/00008256
http://hdl.handle.net/10228/00008256
249b28a5-3657-43a6-a6f8-dc7f402d32c9
名前 / ファイル ライセンス アクション
10352620.pdf 10352620.pdf (4.4 MB)
Item type 学術雑誌論文 = Journal Article(1)
公開日 2021-05-17
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
タイトル
タイトル Local Online Motor Babbling: Learning Motor Abundance of a Musculoskeletal Robot Arm
言語 en
言語
言語 eng
著者 Liu, Zinan

× Liu, Zinan

WEKO 30485

en Liu, Zinan
Liu, Z.

Search repository
Hitzmann, Arne

× Hitzmann, Arne

WEKO 30486

en Hitzmann, Arne
Hitzmann, A.

Search repository
池本, 周平

× 池本, 周平

WEKO 30354
e-Rad 00588353
Scopus著者ID 23389263700
九工大研究者情報 100001226

en Ikemoto, Shuhei

ja 池本, 周平

ja-Kana イケモト, シュウヘイ


Search repository
Stark, Svenja

× Stark, Svenja

WEKO 30488

en Stark, Svenja
Stark, S.

Search repository
Peters, Jan

× Peters, Jan

WEKO 30489

en Peters, Jan
Peters, J.

Search repository
Hosoda, Koh

× Hosoda, Koh

WEKO 30490

en Hosoda, Koh
Hosoda, K.

Search repository
抄録
内容記述タイプ Abstract
内容記述 Motor babbling and goal babbling has been used for sensorimotor learning of highly redundant systems in soft robotics. Recent works in goal babbling have demonstrated successful learning of inverse kinematics (IK) on such systems, and suggest that babbling in the goal space better resolves motor redundancy by learning as few yet efficient sensorimotor mappings as possible. However, for musculoskeletal robot systems, motor redundancy can provide useful information to explain muscle activation patterns, thus the term motor abundance. In this work, we introduce some simple heuristics to empirically define the unknown goal space, and learn the IK of a 10 DoF musculoskeletal robot arm using directed goal babbling. We then further propose local online motor babbling guided by Covariance Matrix Adaptation Evolution Strategy (CMA-ES), which bootstraps on the goal babbling samples for initialization, such that motor abundance can be queried online for any static goal. Our approach leverages the resolving of redundancies and the efficient guided exploration of motor abundance in two stages of learning, allowing both kinematic accuracy and motor variability at the queried goal. The result shows that local online motor babbling guided by CMA-ES can efficiently explore motor abundance at queried goal positions on a musculoskeletal robot system and gives useful insights in terms of muscle stiffness and synergy.
言語 en
備考
内容記述タイプ Other
内容記述 IEEE/RSJ International Conference on Intelligent Robots and Systems (iROS2019), November 4 - 8, 2019, Macau, China
書誌情報 en : 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

p. 6594-6601, 発行日 2020-01-27
出版社
出版者 IEEE
DOI
関連タイプ isVersionOf
識別子タイプ DOI
関連識別子 https://doi.org/10.1109/IROS40897.2019.8967791
ISBN
識別子タイプ ISBN
関連識別子 978-1-7281-4004-9
ISBN
識別子タイプ ISBN
関連識別子 978-1-7281-4003-2
ISBN
識別子タイプ ISBN
関連識別子 978-1-7281-4005-6
日本十進分類法
主題Scheme NDC
主題 501
ISSN
収録物識別子タイプ PISSN
収録物識別子 2153-0858
ISSN
収録物識別子タイプ EISSN
収録物識別子 2153-0866
著作権関連情報
権利情報 Copyright (c) 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
出版タイプ
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
査読の有無
値 yes
研究者情報
URL https://hyokadb02.jimu.kyutech.ac.jp/html/100001226_ja.html
論文ID(連携)
値 10352620
連携ID
値 8838
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 13:21:27.215251
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3