ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文
  2. 5 技術(工学)

Natural Images Allow Universal Adversarial Attacks on Medical Image Classification Using Deep Neural Networks with Transfer Learning

http://hdl.handle.net/10228/00008714
http://hdl.handle.net/10228/00008714
e6e0fe5e-a782-4e20-b10e-dabda9e2516f
名前 / ファイル ライセンス アクション
jimaging-08-00038.pdf jimaging-08-00038.pdf (3.7 MB)
Item type 学術雑誌論文 = Journal Article(1)
公開日 2022-02-08
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
タイトル
タイトル Natural Images Allow Universal Adversarial Attacks on Medical Image Classification Using Deep Neural Networks with Transfer Learning
言語 en
その他のタイトル
その他のタイトル Natural images allow universal adversarial attacks on medical image classification using deep neural networks with transfer learning
言語 en
言語
言語 eng
著者 Minagi, Akinori

× Minagi, Akinori

WEKO 32488

en Minagi, Akinori

Search repository
Hirano, Hokuto

× Hirano, Hokuto

WEKO 32489

en Hirano, Hokuto

Search repository
竹本, 和広

× 竹本, 和広

WEKO 24877
e-Rad 40512356
Scopus著者ID 35270356700
ORCiD 0000-0002-6355-1366
九工大研究者情報 100000509

en Takemoto, Kazuhiro

ja 竹本, 和広

ja-Kana タケモト, カズヒロ


Search repository
抄録
内容記述タイプ Abstract
内容記述 Transfer learning from natural images is used in deep neural networks (DNNs) for medical image classification to achieve a computer-aided clinical diagnosis. Although the adversarial vulnerability of DNNs hinders practical applications owing to the high stakes of diagnosis, adversarial attacks are expected to be limited because training datasets (medical images), which are often required for adversarial attacks, are generally unavailable in terms of security and privacy preservation. Nevertheless, in this study, we demonstrated that adversarial attacks are also possible using natural images for medical DNN models with transfer learning, even if such medical images are unavailable; in particular, we showed that universal adversarial perturbations (UAPs) can also be generated from natural images. UAPs from natural images are useful for both non-targeted and targeted attacks. The performance of UAPs from natural images was significantly higher than that of random controls. The use of transfer learning causes a security hole, which decreases the reliability and safety of computer-based disease diagnosis. Model training from random initialization reduced the performance of UAPs from natural images; however, it did not completely avoid vulnerability to UAPs. The vulnerability of UAPs to natural images is expected to become a significant security threat.
言語 en
書誌情報 en : Journal of Imaging

巻 8, 号 2, p. 38-1-38-16, 発行日 2022-02-04
出版社
出版者 MDPI
DOI
関連タイプ isIdenticalTo
識別子タイプ DOI
関連識別子 https://doi.org/10.3390/jimaging8020038
日本十進分類法
主題Scheme NDC
主題 548
ISSN
収録物識別子タイプ EISSN
収録物識別子 2313-433X
著作権関連情報
権利情報Resource http://creativecommons.org/licenses/by/4.0/
権利情報 Copyright (c) 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
キーワード
主題Scheme Other
主題 deep neural networks
キーワード
主題Scheme Other
主題 transfer learning
キーワード
主題Scheme Other
主題 medical imaging
キーワード
主題Scheme Other
主題 adversarial attacks
キーワード
主題Scheme Other
主題 security and privacy
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
査読の有無
値 yes
研究者情報
URL https://hyokadb02.jimu.kyutech.ac.jp/html/100000509_ja.html
論文ID(連携)
値 10384685
連携ID
値 10117
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 13:06:11.667197
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3