ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文
  2. 5 技術(工学)

Mixed-precision weights network for field-programmable gate array

http://hdl.handle.net/10228/00008263
http://hdl.handle.net/10228/00008263
53baad9b-5c26-4b5e-abc2-d33dfe6d9c5a
名前 / ファイル ライセンス アクション
journal.pone.0251329.pdf journal.pone.0251329.pdf (1.5 MB)
Item type 学術雑誌論文 = Journal Article(1)
公開日 2021-05-20
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
タイトル
タイトル Mixed-precision weights network for field-programmable gate array
言語 en
言語
言語 eng
著者 Fuengfusin, Ninnart

× Fuengfusin, Ninnart

WEKO 30519

en Fuengfusin, Ninnart

Search repository
田向, 権

× 田向, 権

WEKO 6059
e-Rad 90432955
Scopus著者ID 7801453348
ORCiD 0000-0002-3669-1371
九工大研究者情報 100000641

en Tamukoh, Hakaru

ja 田向, 権

ja-Kana タムコウ, ハカル


Search repository
抄録
内容記述タイプ Abstract
内容記述 In this study, we introduced a mixed-precision weights network (MPWN), which is a quantization neural network that jointly utilizes three different weight spaces: binary {−1,1}, ternary {−1,0,1}, and 32-bit floating-point. We further developed the MPWN from both software and hardware aspects. From the software aspect, we evaluated the MPWN on the Fashion-MNIST and CIFAR10 datasets. We systematized the accuracy sparsity bit score, which is a linear combination of accuracy, sparsity, and number of bits. This score allows Bayesian optimization to be used efficiently to search for MPWN weight space combinations. From the hardware aspect, we proposed XOR signed-bits to explore floating-point and binary weight spaces in the MPWN. XOR signed-bits is an efficient implementation equivalent to multiplication of floating-point and binary weight spaces. Using the concept from XOR signed bits, we also provide a ternary bitwise operation that is an efficient implementation equivalent to the multiplication of floating-point and ternary weight space. To demonstrate the compatibility of the MPWN with hardware implementation, we synthesized and implemented the MPWN in a field-programmable gate array using high-level synthesis. Our proposed MPWN implementation utilized up to 1.68-4.89 times less hardware resources depending on the type of resources than a conventional 32-bit floating-point model. In addition, our implementation reduced the latency up to 31.55 times compared to 32-bit floating-point model without optimizations.
言語 en
書誌情報 en : PLoS ONE

巻 16, 号 5, p. e0251329, 発行日 2021-05-10
出版社
出版者 Public Library of Science
言語 en
DOI
関連タイプ isIdenticalTo
識別子タイプ DOI
関連識別子 https://doi.org/10.1371/journal.pone.0251329
日本十進分類法
主題Scheme NDC
主題 548
ISSN
収録物識別子タイプ EISSN
収録物識別子 1932-6203
著作権関連情報
権利情報 Copyright (c) 2021 Fuengfusin, Tamukoh.
著作権関連情報
権利情報Resource http://creativecommons.org/licenses/by/4.0/
権利情報 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
査読の有無
値 yes
研究者情報
URL https://hyokadb02.jimu.kyutech.ac.jp/html/100000641_ja.html
論文ID(連携)
値 10364473
連携ID
値 8846
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 13:21:35.913878
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3