ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "6e01781b-e31f-4faa-9f35-ddd7af8aff9d"}, "_deposit": {"created_by": 3, "id": "7862", "owners": [3], "pid": {"revision_id": 0, "type": "depid", "value": "7862"}, "status": "published"}, "_oai": {"id": "oai:kyutech.repo.nii.ac.jp:00007862", "sets": ["9"]}, "author_link": ["402", "34549", "34546", "34548", "34551", "34547"], "item_21_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2021-04-29", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "9263-11", "bibliographicPageStart": "9263-1", "bibliographicVolumeNumber": "11", "bibliographic_titles": [{"bibliographic_title": "Scientific Reports"}]}]}, "item_21_description_4": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "The rapid increase of patients with coronavirus disease 2019 (COVID-19) has introduced major challenges to healthcare services worldwide. Therefore, fast and accurate clinical assessment of COVID-19 progression and mortality is vital for the management of COVID-19 patients. We developed an automated image-based survival prediction model, called U-survival, which combines deep learning of chest CT images with the established survival analysis methodology of an elastic-net Cox survival model. In an evaluation of 383 COVID-19 positive patients from two hospitals, the prognostic bootstrap prediction performance of U-survival was significantly higher (P \u003c 0.0001) than those of existing laboratory and image-based reference predictors both for COVID-19 progression (maximum concordance index: 91.6% [95% confidence interval 91.5, 91.7]) and for mortality (88.7% [88.6, 88.9]), and the separation between the Kaplan–Meier survival curves of patients stratified into low- and high-risk groups was largest for U-survival (P \u003c 3 × 10–14). The results indicate that U-survival can be used to provide automated and objective prognostic predictions for the management of COVID-19 patients.", "subitem_description_type": "Abstract"}]}, "item_21_description_60": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"subitem_description": "Journal Article", "subitem_description_type": "Other"}]}, "item_21_publisher_7": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "Nature Publishing Group"}]}, "item_21_relation_12": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type": "isIdenticalTo", "subitem_relation_type_id": {"subitem_relation_type_id_text": "https://doi.org/10.1038/s41598-021-88591-z", "subitem_relation_type_select": "DOI"}}]}, "item_21_rights_13": {"attribute_name": "権利", "attribute_value_mlt": [{"subitem_rights": "Copyright (c) The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/."}]}, "item_21_select_59": {"attribute_name": "査読の有無", "attribute_value_mlt": [{"subitem_select_item": "yes"}]}, "item_21_source_id_8": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "2045-2322", "subitem_source_identifier_type": "ISSN"}]}, "item_21_subject_16": {"attribute_name": "日本十進分類法", "attribute_value_mlt": [{"subitem_subject": "493", "subitem_subject_scheme": "NDC"}]}, "item_21_text_36": {"attribute_name": "著者所属", "attribute_value_mlt": [{"subitem_text_value": "Massachusetts General Hospital and Harvard Medical School"}, {"subitem_text_value": "Massachusetts General Hospital and Harvard Medical School, Kyushu Institute of Technology"}, {"subitem_text_value": "Massachusetts General Hospital and Harvard Medical School"}, {"subitem_text_value": "Massachusetts General Hospital and Harvard Medical School"}, {"subitem_text_value": "Kyushu Institute of Technology"}, {"subitem_text_value": "Massachusetts General Hospital and Harvard Medical School"}]}, "item_21_text_63": {"attribute_name": "連携ID", "attribute_value_mlt": [{"subitem_text_value": "10830"}]}, "item_21_version_type_58": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_970fb48d4fbd8a85", "subitem_version_type": "VoR"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Näppi,  Janne J."}], "nameIdentifiers": [{"nameIdentifier": "34546", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Uemura,  Tomoki"}], "nameIdentifiers": [{"nameIdentifier": "34547", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Watari,  Chinatsu"}], "nameIdentifiers": [{"nameIdentifier": "34548", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Hironaka,  Toru"}], "nameIdentifiers": [{"nameIdentifier": "34549", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Kamiya, Tohru"}], "nameIdentifiers": [{"nameIdentifier": "402", "nameIdentifierScheme": "WEKO"}, {"nameIdentifier": "80295005", "nameIdentifierScheme": "e-Rad", "nameIdentifierURI": "https://nrid.nii.ac.jp/ja/nrid/1000080295005/"}, {"nameIdentifier": "55739611300", "nameIdentifierScheme": "Scopus著者ID", "nameIdentifierURI": "https://www.scopus.com/authid/detail.uri?authorId=55739611300"}, {"nameIdentifier": "25", "nameIdentifierScheme": "九工大研究者情報", "nameIdentifierURI": "https://hyokadb02.jimu.kyutech.ac.jp/html/25_ja.html"}]}, {"creatorNames": [{"creatorName": "Yoshida,  Hiroyuki"}], "nameIdentifiers": [{"nameIdentifier": "34551", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2023-02-01"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "LaSEINE-2021_001.pdf", "filesize": [{"value": "2.1 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 2100000.0, "url": {"label": "LaSEINE-2021_001.pdf", "url": "https://kyutech.repo.nii.ac.jp/record/7862/files/LaSEINE-2021_001.pdf"}, "version_id": "99cc06da-8d03-4ab3-9c39-ee49adae6426"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "U-survival for prognostic prediction of disease progression and mortality of patients with COVID-19", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "U-survival for prognostic prediction of disease progression and mortality of patients with COVID-19"}]}, "item_type_id": "21", "owner": "3", "path": ["9"], "permalink_uri": "http://hdl.handle.net/10228/00009065", "pubdate": {"attribute_name": "公開日", "attribute_value": "2023-02-01"}, "publish_date": "2023-02-01", "publish_status": "0", "recid": "7862", "relation": {}, "relation_version_is_last": true, "title": ["U-survival for prognostic prediction of disease progression and mortality of patients with COVID-19"], "weko_shared_id": 3}
  1. 学術雑誌論文
  2. 4 自然科学

U-survival for prognostic prediction of disease progression and mortality of patients with COVID-19

http://hdl.handle.net/10228/00009065
http://hdl.handle.net/10228/00009065
74cbc1fe-56ed-4a3a-9ddb-ee80cd072d4a
名前 / ファイル ライセンス アクション
LaSEINE-2021_001.pdf LaSEINE-2021_001.pdf (2.1 MB)
Item type 学術雑誌論文 = Journal Article(1)
公開日 2023-02-01
タイトル
タイトル U-survival for prognostic prediction of disease progression and mortality of patients with COVID-19
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 Näppi, Janne J.

× Näppi, Janne J.

WEKO 34546

Näppi, Janne J.

Search repository
Uemura, Tomoki

× Uemura, Tomoki

WEKO 34547

Uemura, Tomoki

Search repository
Watari, Chinatsu

× Watari, Chinatsu

WEKO 34548

Watari, Chinatsu

Search repository
Hironaka, Toru

× Hironaka, Toru

WEKO 34549

Hironaka, Toru

Search repository
Kamiya, Tohru

× Kamiya, Tohru

WEKO 402
e-Rad 80295005
Scopus著者ID 55739611300
九工大研究者情報 25

Kamiya, Tohru

Search repository
Yoshida, Hiroyuki

× Yoshida, Hiroyuki

WEKO 34551

Yoshida, Hiroyuki

Search repository
抄録
内容記述タイプ Abstract
内容記述 The rapid increase of patients with coronavirus disease 2019 (COVID-19) has introduced major challenges to healthcare services worldwide. Therefore, fast and accurate clinical assessment of COVID-19 progression and mortality is vital for the management of COVID-19 patients. We developed an automated image-based survival prediction model, called U-survival, which combines deep learning of chest CT images with the established survival analysis methodology of an elastic-net Cox survival model. In an evaluation of 383 COVID-19 positive patients from two hospitals, the prognostic bootstrap prediction performance of U-survival was significantly higher (P < 0.0001) than those of existing laboratory and image-based reference predictors both for COVID-19 progression (maximum concordance index: 91.6% [95% confidence interval 91.5, 91.7]) and for mortality (88.7% [88.6, 88.9]), and the separation between the Kaplan–Meier survival curves of patients stratified into low- and high-risk groups was largest for U-survival (P < 3 × 10–14). The results indicate that U-survival can be used to provide automated and objective prognostic predictions for the management of COVID-19 patients.
書誌情報 Scientific Reports

巻 11, p. 9263-1-9263-11, 発行日 2021-04-29
出版者
出版者 Nature Publishing Group
ISSN
収録物識別子タイプ ISSN
収録物識別子 2045-2322
DOI
関連タイプ isIdenticalTo
識別子タイプ DOI
関連識別子 https://doi.org/10.1038/s41598-021-88591-z
日本十進分類法
主題Scheme NDC
主題 493
著作権関連情報
権利情報 Copyright (c) The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
査読の有無
値 yes
連携ID
10830
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 12:36:06.376797
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3