ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学位論文
  2. 学位論文

統計的形状モデルの構築法とその医用画像上の臓器領域のセグメンテーションへの応用に関する研究

https://doi.org/10.18997/00004077
https://doi.org/10.18997/00004077
92048305-2e2b-45f7-9d0c-cd00bc94e4fe
名前 / ファイル ライセンス アクション
D-212_kou_k_353.pdf D-212_kou_k_353.pdf (7.8 MB)
Item type 学位論文 = Thesis or Dissertation(1)
公開日 2014-07-30
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_db06
資源タイプ doctoral thesis
タイトル
タイトル Study on the Method of Constructing a Statistical Shape Model and Its Application to the Segmentation of Internal Organs in Medical Images
言語 en
タイトル
タイトル 統計的形状モデルの構築法とその医用画像上の臓器領域のセグメンテーションへの応用に関する研究
言語 ja
言語
言語 eng
著者 李, 光旭

× 李, 光旭

en Li, Guangxu

ja 李, 光旭

Search repository
抄録
内容記述タイプ Abstract
内容記述 In image processing, segmentation is one of the critical tasks for diagnostic analysis and image interpretation. In the following thesis, we describe the investigation of three problems related to the segmentation algorithms for medical images: Active shape model algorithm, 3-dimensional (3-D) statistical shape model building and organic segmentation experiments. For the development of Active shape models, the constraints of statistical model reduced this algorithm to be difficult for various biological shapes. To overcome the coupling of parameters in the original algorithm, in this thesis, the genetic algorithm is introduced to relax the shape limitation. How to construct a robust and effective 3-D point model is still a key step in statistical shape models. Generally the shape information is obtained from manually segmented voxel data. In this thesis, a two-step procedure for generating these models was designed. After transformed the voxel data to triangular polygonal data, in the first step, attitudes of these interesting objects are aligned according their surface features. We propose to reflect the surface orientations by means of their Gauss maps. As well the Gauss maps are mapped to a complex plane using stereographic projection approach. The experiment was run to align a set of left lung models. The second step is identifying the positions of landmarks on polygonal surfaces. This is solved by surface parameterization method. We proposed two simplex methods to correspond the landmarks. A semi-automatic method attempts to “copy” the phasic positions of pre-placed landmarks to all the surfaces, which have been mapped to the same parameterization domain. Another automatic corresponding method attempts to place the landmarks equidistantly. Finally, the goodness experiments were performed to measure the difference to manually corresponded results. And we also compared the affection to correspondence when using different surface mapping methods. The third part of this thesis is applying the segmentation algorithms to solve clinical problems. We did not stick to the model-based methods but choose the suitable one or their complex according to the objects. In the experiment of lung regions segmentation which includes pulmonary nodules, we propose a complementary region growing method to deal with the unpredictable variation of image densities of lesion regions. In the experiments of liver regions, instead of using region growing method in 3-D style, we turn into a slice-by-slice style in order to reduce the overflows. The image intensity of cardiac regions is distinguishable from lung regions in CT image. But as to the adjacent zone of heart and liver boundary are generally blurry. We utilized a shape model guided method to refine the segmentation results.3-D segmentation techniques have been applied widely not only in medical imaging fields, but also in machine vision, computer graphic. At the last part of this thesis, we resume some interesting topics such as 3-D visualization for medical interpretation, human face recognition and object grasping robot etc.
目次
内容記述タイプ TableOfContents
内容記述 Chapter 1: Introduction||Chapter 2: Framework of Medical Image Segmentation||Chapter 3: 2-D Organic Regions Using Active Shape Model and Genetic Algorithm||Chapter 4: Alignment of 3-D Models||Chapter 5: Corespondence of 3-D Models||Chapter 6:Experiments of Organic Segmentation||Chapter 7: Visualization Technology and Its Applications||Chapter 8: Conclusions and Future Works
備考
内容記述タイプ Other
内容記述 九州工業大学博士学位論文 学位記番号:工博甲第353号 学位授与年月日:平成25年9月27日
キーワード
主題Scheme Other
主題 Point Distribution Model
キーワード
主題Scheme Other
主題 Statistical Shape Models
キーワード
主題Scheme Other
主題 segmentation of internal organs
キーワード
主題Scheme Other
主題 Computer Aided Diagnosis
キーワード
主題Scheme Other
主題 image segmentation
キーワード
主題Scheme Other
主題 medical image processiong
アドバイザー
金, 亨燮
学位授与番号
学位授与番号 甲第353号
学位名
学位名 博士(工学)
学位授与年月日
学位授与年月日 2013-09-27
学位授与機関
学位授与機関識別子Scheme kakenhi
学位授与機関識別子 17104
学位授与機関名 九州工業大学
学位授与年度
内容記述タイプ Other
内容記述 平成25年度
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
ID登録
ID登録 10.18997/00004077
ID登録タイプ JaLC
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 12:46:05.246312
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3