WEKO3
アイテム
A Cause-Based Classification Approach for Malicious DNS Queries Detected Through Blacklists
名前 / ファイル | ライセンス | アクション |
---|---|---|
ACCESS.2019.2944203.pdf (7.8 MB)
|
|
Item type | 学術雑誌論文 = Journal Article(1) | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2020-03-02 | |||||||||||||||||||||||
資源タイプ | ||||||||||||||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||||||||||||||
資源タイプ | journal article | |||||||||||||||||||||||
タイトル | ||||||||||||||||||||||||
タイトル | A Cause-Based Classification Approach for Malicious DNS Queries Detected Through Blacklists | |||||||||||||||||||||||
言語 | en | |||||||||||||||||||||||
言語 | ||||||||||||||||||||||||
言語 | eng | |||||||||||||||||||||||
著者 |
佐藤, 彰洋
× 佐藤, 彰洋
WEKO
27948
× 中村, 豊
WEKO
8847
× 福田, 豊
WEKO
24131
× Sasai, Kazuto× Kitagata, Gen |
|||||||||||||||||||||||
抄録 | ||||||||||||||||||||||||
内容記述タイプ | Abstract | |||||||||||||||||||||||
内容記述 | Some of the most serious security threats facing computer networks involve malware. To prevent this threat, administrators need to swiftly remove the infected machines from their networks. One common way to detect infected machines in a network is by monitoring communications based on blacklists. However, detection using this method has the following two problems: no blacklist is completely reliable, and blacklists do not provide sufficient evidence to allow administrators to determine the validity and accuracy of the detection results. Therefore, simply matching communications with blacklist entries is insufficient, and administrators should pursue their detection causes by investigating the communications themselves. In this paper, we propose an approach for classifying malicious DNS queries detected through blacklists by their causes. This approach is motivated by the following observation: a malware communication is divided into several transactions, each of which generates queries related to the malware; thus, surrounding queries that occur before and after a malicious query detected through blacklists help in estimating the cause of the malicious query. Our cause-based classification drastically reduces the number of malicious queries to be investigated because the investigation scope is limited to only representative queries in the classification results. In experiments, we have confirmed that our approach could group 388 malicious queries into 3 clusters, each consisting of queries with a common cause. These results indicate that administrators can briefly pursue all the causes by investigating only representative queries of each cluster, and thereby swiftly address the problem of infected machines in the network. | |||||||||||||||||||||||
言語 | en | |||||||||||||||||||||||
書誌情報 |
en : IEEE Access 巻 7, p. 142991-143001, 発行日 2019-09-27 |
|||||||||||||||||||||||
出版社 | ||||||||||||||||||||||||
出版者 | IEEE | |||||||||||||||||||||||
DOI | ||||||||||||||||||||||||
関連タイプ | isIdenticalTo | |||||||||||||||||||||||
識別子タイプ | DOI | |||||||||||||||||||||||
関連識別子 | https://doi.org/10.1109/ACCESS.2019.2944203 | |||||||||||||||||||||||
日本十進分類法 | ||||||||||||||||||||||||
主題Scheme | NDC | |||||||||||||||||||||||
主題 | 547 | |||||||||||||||||||||||
ISSN | ||||||||||||||||||||||||
収録物識別子タイプ | EISSN | |||||||||||||||||||||||
収録物識別子 | 2169-3536 | |||||||||||||||||||||||
著作権関連情報 | ||||||||||||||||||||||||
権利情報Resource | http://creativecommons.org/licenses/by/4.0/ | |||||||||||||||||||||||
権利情報 | This work is licensed under a Creative Commons Attribution 4.0 License. http://creativecommons.org/licenses/by/4.0/ | |||||||||||||||||||||||
出版タイプ | ||||||||||||||||||||||||
出版タイプ | VoR | |||||||||||||||||||||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||||||||||||||||||||
査読の有無 | ||||||||||||||||||||||||
値 | yes | |||||||||||||||||||||||
研究者情報 | ||||||||||||||||||||||||
表示名 | https://hyokadb02.jimu.kyutech.ac.jp/html/371_ja.html | |||||||||||||||||||||||
URL | https://hyokadb02.jimu.kyutech.ac.jp/html/371_ja.html | |||||||||||||||||||||||
論文ID(連携) | ||||||||||||||||||||||||
値 | 10350174 | |||||||||||||||||||||||
連携ID | ||||||||||||||||||||||||
値 | 8133 |