ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "1ce80f73-ce96-4ffb-8e5c-8b07683d161b"}, "_deposit": {"created_by": 3, "id": "687", "owners": [3], "pid": {"revision_id": 0, "type": "depid", "value": "687"}, "status": "published"}, "_oai": {"id": "oai:kyutech.repo.nii.ac.jp:00000687", "sets": ["19"]}, "author_link": ["2754"], "item_24_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "1999-06-01", "bibliographicIssueDateType": "Issued"}, "bibliographic_titles": [{"bibliographic_title": "Technical Report in Computer Science and Systems Engineering"}]}]}, "item_24_description_4": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "This paper considers global robust stabilization of a class of nonlinear systemsvia output feedback. A new approach to output-feedback backstepping is proposed. Theapproach provides us with a systematic design procedure which can handle output-feedbackstabilization problems of strict-feedback nonlinear systems in a uni ed way. More importantly,the approach by itself has a mechanism of achieving robust stabilization against ageneral class of structured uncertainties in the procedure. Compared with the state-feedbackglobal stabilization, the the class of uncertainties which has been treated by the literatureof global robust stabilization problems via output feedback is quite restricted in spite of thepractical importance of considering various locations and structure of uncertainties. The approachpresented in this paper can be considered as an successful extension of the author\u0027sstate-dependent design for state-feedback backstepping to the output feedback case. Thereby,this paper shows the power of the general concept of state-dependent scaling design for nonlinearsystems control by looking at output-feedback stabilization problems, especially in abackstepping manner. The scaling approach allows us to treats both static and dynamic uncertaintyin an uni ed way and , in addition, be able to clarify the di erence between their consequences of stabilization in a simple way. The output feedback design proposed also inheritsadvantages of SD scaling design such as automatic computation of backstepping basedon optimization. Controllers in this paper are dynamic feedback which consists of observerand feedback gain(or controller). The essential di erence between nominal stabilization androbust stabilization is described. It is shown that observer design cannot be separated globallyfrom controller design. The observer should be designed strong enough to compensate\\onlinear size of the uncertainty on the entire state-space. The coupling is natural andinevitable in robust stabilization as it is for linear systems. In addition, for nonlinear systems,nonlinearity of the coupling is crucial for global stabilization which cannot be compensatedglobally by either feedback-gain or observer-gain independently. This fact contrasts with nominalstabilization in which it is possible to stabilize the whole system globally by designingcontroller strong enough whenever the observer dynamics by itself design to be only stable(or,vice versa). Strong observers required for robust stabilization may not exist unless the outputhave the full information of the state. If the nonlinear size of uncertainties are small enough,the global robust stabilization can be certainly achieved. This paper shows the condition ofallowable size and nonlinearity of uncertainties for which robust stabilization can be done viabackstepping. The condition is considered as the index  which describes the largest allowablesize of uncertainty in robust stabilization via linear H1 control. Indeed, for linear systems,the condition of  has coupling between feedback gain and observer design(or Riccati inequalities).In addition to the coupling, the condition of the uncertainty size in this paper exhibitsa recursive form because of backstepping. Another feature of the output backstepping proceduresin this paper is that it does not require Young\u0027s inequality. Instead, the paper uses theSchur complements formula which gives a necessary and su cient condition for negativity ofa quadratic form. This paper also proposes a novel recursive procedure of robust observerdesign, which resembles backstepping or forwarding for controller design.", "subitem_description_type": "Abstract"}]}, "item_24_description_60": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"subitem_description": "Technical Report", "subitem_description_type": "Other"}]}, "item_24_full_name_3": {"attribute_name": "著者別名", "attribute_value_mlt": [{"nameIdentifiers": [{"nameIdentifier": "2754", "nameIdentifierScheme": "WEKO"}, {"nameIdentifier": "70274561", "nameIdentifierScheme": "e-Rad", "nameIdentifierURI": "https://nrid.nii.ac.jp/ja/nrid/1000070274561/"}, {"nameIdentifier": "55474153800", "nameIdentifierScheme": "Scopus著者ID", "nameIdentifierURI": "https://www.scopus.com/authid/detail.uri?authorId=55474153800"}, {"nameIdentifier": "235", "nameIdentifierScheme": "九工大研究者情報", "nameIdentifierURI": "https://hyokadb02.jimu.kyutech.ac.jp/html/235_ja.html"}], "names": [{"name": "伊藤, 博"}]}]}, "item_24_publisher_7": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "九州工業大学"}]}, "item_24_source_id_8": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1344-8803", "subitem_source_identifier_type": "ISSN"}]}, "item_24_text_37": {"attribute_name": "著者所属", "attribute_value_mlt": [{"subitem_text_value": "Department of Control Engineering and Science, Kyushu Institute of Technology"}, {"subitem_text_value": "九州工業大学情報工学部 制御システム工学科"}]}, "item_24_text_58": {"attribute_name": "テクニカルレポートNo.", "attribute_value_mlt": [{"subitem_text_value": "CSSE-3"}]}, "item_24_version_type_59": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_970fb48d4fbd8a85", "subitem_version_type": "VoR"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Ito, Hiroshi"}], "nameIdentifiers": [{"nameIdentifier": "2754", "nameIdentifierScheme": "WEKO"}, {"nameIdentifier": "70274561", "nameIdentifierScheme": "e-Rad", "nameIdentifierURI": "https://nrid.nii.ac.jp/ja/nrid/1000070274561/"}, {"nameIdentifier": "55474153800", "nameIdentifierScheme": "Scopus著者ID", "nameIdentifierURI": "https://www.scopus.com/authid/detail.uri?authorId=55474153800"}, {"nameIdentifier": "235", "nameIdentifierScheme": "九工大研究者情報", "nameIdentifierURI": "https://hyokadb02.jimu.kyutech.ac.jp/html/235_ja.html"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2008-02-06"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "csse-3.pdf", "filesize": [{"value": "348.4 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 348400.0, "url": {"label": "csse-3.pdf", "url": "https://kyutech.repo.nii.ac.jp/record/687/files/csse-3.pdf"}, "version_id": "5e606836-fe62-4678-a82c-fe79f98d487c"}]}, "item_keyword": {"attribute_name": "キーワード", "attribute_value_mlt": [{"subitem_subject": "robust backstepping", "subitem_subject_scheme": "Other"}, {"subitem_subject": "state-dependent scaling", "subitem_subject_scheme": "Other"}, {"subitem_subject": "global robust stability", "subitem_subject_scheme": "Other"}, {"subitem_subject": "output feedback", "subitem_subject_scheme": "Other"}, {"subitem_subject": "observer design", "subitem_subject_scheme": "Other"}, {"subitem_subject": "input-to-state stability", "subitem_subject_scheme": "Other"}, {"subitem_subject": "matrix inequality", "subitem_subject_scheme": "Other"}, {"subitem_subject": "convex optimization", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "technical report", "resourceuri": "http://purl.org/coar/resource_type/c_18gh"}]}, "item_title": "State-Dependent Scaling Design for Robust Backstepping via Output Feedback 12", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "State-Dependent Scaling Design for Robust Backstepping via Output Feedback 12"}]}, "item_type_id": "24", "owner": "3", "path": ["19"], "permalink_uri": "http://hdl.handle.net/10228/935", "pubdate": {"attribute_name": "公開日", "attribute_value": "2008-02-06"}, "publish_date": "2008-02-06", "publish_status": "0", "recid": "687", "relation": {}, "relation_version_is_last": true, "title": ["State-Dependent Scaling Design for Robust Backstepping via Output Feedback 12"], "weko_shared_id": 3}
  1. 紀要・テクニカルレポート
  2. テクニカルレポート

State-Dependent Scaling Design for Robust Backstepping via Output Feedback 12

http://hdl.handle.net/10228/935
http://hdl.handle.net/10228/935
d7b2ab71-5438-4e8e-904c-50a3ef8a7ac8
名前 / ファイル ライセンス アクション
csse-3.pdf csse-3.pdf (348.4 kB)
Item type テクニカルレポート = Technical Report(1)
公開日 2008-02-06
タイトル
タイトル State-Dependent Scaling Design for Robust Backstepping via Output Feedback 12
言語
言語 eng
キーワード
主題Scheme Other
主題 robust backstepping
キーワード
主題Scheme Other
主題 state-dependent scaling
キーワード
主題Scheme Other
主題 global robust stability
キーワード
主題Scheme Other
主題 output feedback
キーワード
主題Scheme Other
主題 observer design
キーワード
主題Scheme Other
主題 input-to-state stability
キーワード
主題Scheme Other
主題 matrix inequality
キーワード
主題Scheme Other
主題 convex optimization
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者 Ito, Hiroshi

× Ito, Hiroshi

WEKO 2754
e-Rad 70274561
Scopus著者ID 55474153800
九工大研究者情報 235

Ito, Hiroshi

Search repository
著者別名
姓名 伊藤, 博
抄録
内容記述タイプ Abstract
内容記述 This paper considers global robust stabilization of a class of nonlinear systemsvia output feedback. A new approach to output-feedback backstepping is proposed. Theapproach provides us with a systematic design procedure which can handle output-feedbackstabilization problems of strict-feedback nonlinear systems in a uni ed way. More importantly,the approach by itself has a mechanism of achieving robust stabilization against ageneral class of structured uncertainties in the procedure. Compared with the state-feedbackglobal stabilization, the the class of uncertainties which has been treated by the literatureof global robust stabilization problems via output feedback is quite restricted in spite of thepractical importance of considering various locations and structure of uncertainties. The approachpresented in this paper can be considered as an successful extension of the author'sstate-dependent design for state-feedback backstepping to the output feedback case. Thereby,this paper shows the power of the general concept of state-dependent scaling design for nonlinearsystems control by looking at output-feedback stabilization problems, especially in abackstepping manner. The scaling approach allows us to treats both static and dynamic uncertaintyin an uni ed way and , in addition, be able to clarify the di erence between their consequences of stabilization in a simple way. The output feedback design proposed also inheritsadvantages of SD scaling design such as automatic computation of backstepping basedon optimization. Controllers in this paper are dynamic feedback which consists of observerand feedback gain(or controller). The essential di erence between nominal stabilization androbust stabilization is described. It is shown that observer design cannot be separated globallyfrom controller design. The observer should be designed strong enough to compensate\onlinear size of the uncertainty on the entire state-space. The coupling is natural andinevitable in robust stabilization as it is for linear systems. In addition, for nonlinear systems,nonlinearity of the coupling is crucial for global stabilization which cannot be compensatedglobally by either feedback-gain or observer-gain independently. This fact contrasts with nominalstabilization in which it is possible to stabilize the whole system globally by designingcontroller strong enough whenever the observer dynamics by itself design to be only stable(or,vice versa). Strong observers required for robust stabilization may not exist unless the outputhave the full information of the state. If the nonlinear size of uncertainties are small enough,the global robust stabilization can be certainly achieved. This paper shows the condition ofallowable size and nonlinearity of uncertainties for which robust stabilization can be done viabackstepping. The condition is considered as the index which describes the largest allowablesize of uncertainty in robust stabilization via linear H1 control. Indeed, for linear systems,the condition of has coupling between feedback gain and observer design(or Riccati inequalities).In addition to the coupling, the condition of the uncertainty size in this paper exhibitsa recursive form because of backstepping. Another feature of the output backstepping proceduresin this paper is that it does not require Young's inequality. Instead, the paper uses theSchur complements formula which gives a necessary and su cient condition for negativity ofa quadratic form. This paper also proposes a novel recursive procedure of robust observerdesign, which resembles backstepping or forwarding for controller design.
書誌情報 Technical Report in Computer Science and Systems Engineering

発行日 1999-06-01
出版者
出版者 九州工業大学
ISSN
収録物識別子タイプ ISSN
収録物識別子 1344-8803
著者所属
Department of Control Engineering and Science, Kyushu Institute of Technology
著者所属
九州工業大学情報工学部 制御システム工学科
テクニカルレポートNo.
CSSE-3
版
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
資料タイプ
内容記述タイプ Other
内容記述 Technical Report
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 13:19:18.175701
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3