ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文
  2. 5 技術(工学)

Simultaneous Visualization of Documents, Words and Topics by Tensor Self-Organizing Map and Non-negative Matrix Factorization

http://hdl.handle.net/10228/00008362
http://hdl.handle.net/10228/00008362
eced3bf4-8bf9-4162-abdf-89f84d48c822
名前 / ファイル ライセンス アクション
neuro_22.pdf neuro_22.pdf (3.2 MB)
Item type 学術雑誌論文 = Journal Article(1)
公開日 2021-06-10
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
タイトル
タイトル Simultaneous Visualization of Documents, Words and Topics by Tensor Self-Organizing Map and Non-negative Matrix Factorization
言語
言語 eng
著者 Noguchi, Kazuki

× Noguchi, Kazuki

WEKO 30784

Noguchi, Kazuki

Search repository
Ishida, Takuro

× Ishida, Takuro

WEKO 30785

Ishida, Takuro

Search repository
古川, 徹生

× 古川, 徹生

WEKO 661
e-Rad 50219101
Scopus著者ID 56237975100
ORCiD 0000-0002-4469-7749
九工大研究者情報 343

en Furukawa, Tetsuo

ja 古川, 徹生

ja-Kana フルカワ, テツオ


Search repository
抄録
内容記述タイプ Abstract
内容記述 The purpose of this work is to develop a simultaneous visualization method of documents, words, and topics. The task of the proposed method is to map a set of documents to a pair of low-dimensional latent spaces corresponding to documents and words, by which the relations between them are visualized. In addition, the method also decomposes the mapping as the sum of topics, so that the topic distributions are visualized on the latent spaces. To achieve the task, we combined the tensor self-organizing map and the non-negative matrix factorization. We applied the method to NeurIPS data set, and the result shows that the method enables us to understand the tripartite relation between document, words and topics easily.
備考
内容記述タイプ Other
内容記述 2020 Joint 11th International Conference on Soft Computing and Intelligent Systems and 21st International Symposium on Advanced Intelligent Systems (SCIS-ISIS), December 5-8, 2020, Hachijo island, Tokyo, Japan(オンライン開催に変更)
書誌情報 2020 Joint 11th International Conference on Soft Computing and Intelligent Systems and 21st International Symposium on Advanced Intelligent Systems (SCIS-ISIS)

発行日 2021-01-21
出版社
出版者 IEEE
DOI
関連タイプ isVersionOf
識別子タイプ DOI
関連識別子 https://doi.org/10.1109/SCISISIS50064.2020.9322683
ISBN
識別子タイプ ISBN
関連識別子 978-1-7281-9732-6
ISBN
識別子タイプ ISBN
関連識別子 978-1-7281-9733-3
著作権関連情報
権利情報 Copyright (c) 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
キーワード
主題Scheme Other
主題 tensor self-organizing map
キーワード
主題Scheme Other
主題 document analysis
キーワード
主題Scheme Other
主題 topic
キーワード
主題Scheme Other
主題 non-negative matrix factorization
出版タイプ
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
査読の有無
値 yes
連携ID
値 8966
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 13:20:02.659592
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3