ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "b2c3dc39-58ec-4d6c-bd64-f7f0a04df15c"}, "_deposit": {"created_by": 3, "id": "7863", "owners": [3], "pid": {"revision_id": 0, "type": "depid", "value": "7863"}, "status": "published"}, "_oai": {"id": "oai:kyutech.repo.nii.ac.jp:00007863", "sets": ["9"]}, "author_link": ["402", "34552", "34557", "34555", "34561", "34560", "15968", "34556"], "item_21_alternative_title_18": {"attribute_name": "その他のタイトル", "attribute_value_mlt": [{"subitem_alternative_title": "Classification of Respiratory Sounds by scSE-CRNN from Triple Types of Respiratory Sound Images"}]}, "item_21_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2021-12-27", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "4", "bibliographicPageEnd": "159", "bibliographicPageStart": "152", "bibliographicVolumeNumber": "38", "bibliographic_titles": [{"bibliographic_title": "医用画像情報学会雑誌"}]}]}, "item_21_description_4": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "Due to the respiratory diseases such as chronic obstructive pulmonary disease and lower respiratory tract infections nearly 8 million people were died worldwide each year. Reducing the number of deaths from respiratory diseases is a challenge to be solved worldwide. Early detection is the most efficient way to reduce the number of deaths in respiratory illness. As a result, the spread of infection can be suppressed, and the therapeutic effect can be enhanced. Currently, auscultation is performed as a promising method for early detection of respiratory diseases. Auscultation can estimate respiratory diseases by distinguishing abnormal sounds contained in respiratory sounds. However, medical staff need to be trained to perform auscultation with high accuracy. Also, the diagnostic results depend on each staff subjectively, which can lead to inconsistent results. Therefore, in some environments, a shortage of specialized health care workers can lead to the spread of respiratory illness. To solve this problem, an application that analyzes respiratory sounds and outputs diagnostic results is needed. In this paper, we use a newly proposed deep learning model to automatically classify the respiratory sound data from the ICBHI 2017 Challenge Dataset. Short-Time Fourier Transform, Constant-Q Transform, and Continuous Wavelet Transform are applied to the respiratory sound data to convert it into the time-frequency region. Then, the obtained three types of breath sound images are input to CRNN (Convolutional Recurrent Neural Network) having scSE (Spatial and Channel Squeeze \u0026 Excitation) Block. The accuracy is improved by weighting the features of each image. As a result, AUC (Area Under the Curve): (Normal:0.87, Crackle:0.88, Wheeze:0.92, Both:0.89), Sensitivity: 0.67, Specificity: 0.82, Average Score: 0.75, Harmonic Score: 0.74, Accuracy: 0.75 were obtained.", "subitem_description_type": "Abstract"}]}, "item_21_description_60": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"subitem_description": "Journal Article", "subitem_description_type": "Other"}]}, "item_21_full_name_3": {"attribute_name": "著者別名", "attribute_value_mlt": [{"nameIdentifiers": [{"nameIdentifier": "34557", "nameIdentifierScheme": "WEKO"}], "names": [{"name": "Asatani,  Naoki"}]}, {"nameIdentifiers": [{"nameIdentifier": "15968", "nameIdentifierScheme": "WEKO"}, {"nameIdentifier": "40742466", "nameIdentifierScheme": "e-Rad", "nameIdentifierURI": "https://nrid.nii.ac.jp/ja/nrid/1000040742466/"}, {"nameIdentifier": "57209823396", "nameIdentifierScheme": "Scopus著者ID", "nameIdentifierURI": "https://www.scopus.com/authid/detail.uri?authorId=57209823396"}, {"nameIdentifier": "0000-0001-9794-3221", "nameIdentifierScheme": "ORCiD", "nameIdentifierURI": "https://orcid.org/0000-0001-9794-3221"}, {"nameIdentifier": "100000960", "nameIdentifierScheme": "九工大研究者情報", "nameIdentifierURI": "https://hyokadb02.jimu.kyutech.ac.jp/html/100000960_ja.html"}], "names": [{"name": "Lu, Huimin"}]}, {"nameIdentifiers": [{"nameIdentifier": "402", "nameIdentifierScheme": "WEKO"}, {"nameIdentifier": "80295005", "nameIdentifierScheme": "e-Rad", "nameIdentifierURI": "https://nrid.nii.ac.jp/ja/nrid/1000080295005/"}, {"nameIdentifier": "55739611300", "nameIdentifierScheme": "Scopus著者ID", "nameIdentifierURI": "https://www.scopus.com/authid/detail.uri?authorId=55739611300"}, {"nameIdentifier": "25", "nameIdentifierScheme": "九工大研究者情報", "nameIdentifierURI": "https://hyokadb02.jimu.kyutech.ac.jp/html/25_ja.html"}], "names": [{"name": "Kamiya, Tohru"}]}, {"nameIdentifiers": [{"nameIdentifier": "34560", "nameIdentifierScheme": "WEKO"}], "names": [{"name": "Mabu,  Shingo"}]}, {"nameIdentifiers": [{"nameIdentifier": "34561", "nameIdentifierScheme": "WEKO"}], "names": [{"name": "Kido,  Shoji"}]}]}, "item_21_publisher_7": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "医用画像情報学会"}]}, "item_21_relation_12": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type": "isIdenticalTo", "subitem_relation_type_id": {"subitem_relation_type_id_text": "https://doi.org/10.11318/mii.38.152", "subitem_relation_type_select": "DOI"}}]}, "item_21_relation_66": {"attribute_name": "論文ID(NAID)", "attribute_value_mlt": [{"subitem_relation_type": "isIdenticalTo", "subitem_relation_type_id": {"subitem_relation_type_id_text": "http://ci.nii.ac.jp/naid/130008136055", "subitem_relation_type_select": "NAID"}}]}, "item_21_rights_13": {"attribute_name": "権利", "attribute_value_mlt": [{"subitem_rights": "Copyright (c) 2021 医用画像情報学会"}]}, "item_21_select_59": {"attribute_name": "査読の有無", "attribute_value_mlt": [{"subitem_select_item": "yes"}]}, "item_21_source_id_10": {"attribute_name": "書誌レコードID", "attribute_value_mlt": [{"subitem_source_identifier": "AN10156808", "subitem_source_identifier_type": "NCID"}]}, "item_21_source_id_8": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1880-4977", "subitem_source_identifier_type": "ISSN"}, {"subitem_source_identifier": "0910-1543", "subitem_source_identifier_type": "ISSN"}]}, "item_21_subject_16": {"attribute_name": "日本十進分類法", "attribute_value_mlt": [{"subitem_subject": "492", "subitem_subject_scheme": "NDC"}]}, "item_21_text_36": {"attribute_name": "著者所属", "attribute_value_mlt": [{"subitem_text_value": "九州工業大学"}, {"subitem_text_value": "九州工業大学"}, {"subitem_text_value": "九州工業大学"}, {"subitem_text_value": "山口大学"}, {"subitem_text_value": "大阪大学"}]}, "item_21_text_63": {"attribute_name": "連携ID", "attribute_value_mlt": [{"subitem_text_value": "10861"}]}, "item_21_version_type_58": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_970fb48d4fbd8a85", "subitem_version_type": "VoR"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "浅谷,  尚希"}], "nameIdentifiers": [{"nameIdentifier": "34552", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "陸, 慧敏"}], "nameIdentifiers": [{"nameIdentifier": "15968", "nameIdentifierScheme": "WEKO"}, {"nameIdentifier": "40742466", "nameIdentifierScheme": "e-Rad", "nameIdentifierURI": "https://nrid.nii.ac.jp/ja/nrid/1000040742466/"}, {"nameIdentifier": "57209823396", "nameIdentifierScheme": "Scopus著者ID", "nameIdentifierURI": "https://www.scopus.com/authid/detail.uri?authorId=57209823396"}, {"nameIdentifier": "0000-0001-9794-3221", "nameIdentifierScheme": "ORCiD", "nameIdentifierURI": "https://orcid.org/0000-0001-9794-3221"}, {"nameIdentifier": "100000960", "nameIdentifierScheme": "九工大研究者情報", "nameIdentifierURI": "https://hyokadb02.jimu.kyutech.ac.jp/html/100000960_ja.html"}]}, {"creatorNames": [{"creatorName": "神谷, 亨"}], "nameIdentifiers": [{"nameIdentifier": "402", "nameIdentifierScheme": "WEKO"}, {"nameIdentifier": "80295005", "nameIdentifierScheme": "e-Rad", "nameIdentifierURI": "https://nrid.nii.ac.jp/ja/nrid/1000080295005/"}, {"nameIdentifier": "55739611300", "nameIdentifierScheme": "Scopus著者ID", "nameIdentifierURI": "https://www.scopus.com/authid/detail.uri?authorId=55739611300"}, {"nameIdentifier": "25", "nameIdentifierScheme": "九工大研究者情報", "nameIdentifierURI": "https://hyokadb02.jimu.kyutech.ac.jp/html/25_ja.html"}]}, {"creatorNames": [{"creatorName": "間普,  真吾"}], "nameIdentifiers": [{"nameIdentifier": "34555", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "木戸,  尚治"}], "nameIdentifiers": [{"nameIdentifier": "34556", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2023-02-02"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "LaSEINE-2021_032.pdf", "filesize": [{"value": "2.3 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 2300000.0, "url": {"label": "LaSEINE-2021_032.pdf", "url": "https://kyutech.repo.nii.ac.jp/record/7863/files/LaSEINE-2021_032.pdf"}, "version_id": "25a77e86-fede-4413-a224-81848ae8d2a6"}]}, "item_keyword": {"attribute_name": "キーワード", "attribute_value_mlt": [{"subitem_subject": "Respiratory Sounds Classification", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Computer Aided Diagnosis", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Time-Frequency Analysis", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Deep Learning", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "jpn"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "scSE-CRNNと3種類の呼吸音変換画像による呼吸音の分類", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "scSE-CRNNと3種類の呼吸音変換画像による呼吸音の分類"}]}, "item_type_id": "21", "owner": "3", "path": ["9"], "permalink_uri": "http://hdl.handle.net/10228/00009066", "pubdate": {"attribute_name": "公開日", "attribute_value": "2023-02-02"}, "publish_date": "2023-02-02", "publish_status": "0", "recid": "7863", "relation": {}, "relation_version_is_last": true, "title": ["scSE-CRNNと3種類の呼吸音変換画像による呼吸音の分類"], "weko_shared_id": 3}
  1. 学術雑誌論文
  2. 4 自然科学

scSE-CRNNと3種類の呼吸音変換画像による呼吸音の分類

http://hdl.handle.net/10228/00009066
http://hdl.handle.net/10228/00009066
1310a348-9e59-43dd-a5c9-d139082cf400
名前 / ファイル ライセンス アクション
LaSEINE-2021_032.pdf LaSEINE-2021_032.pdf (2.3 MB)
Item type 学術雑誌論文 = Journal Article(1)
公開日 2023-02-02
タイトル
タイトル scSE-CRNNと3種類の呼吸音変換画像による呼吸音の分類
その他のタイトル
その他のタイトル Classification of Respiratory Sounds by scSE-CRNN from Triple Types of Respiratory Sound Images
言語
言語 jpn
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 浅谷, 尚希

× 浅谷, 尚希

WEKO 34552

浅谷, 尚希

Search repository
陸, 慧敏

× 陸, 慧敏

WEKO 15968
e-Rad 40742466
Scopus著者ID 57209823396
ORCiD 0000-0001-9794-3221
九工大研究者情報 100000960

陸, 慧敏

Search repository
神谷, 亨

× 神谷, 亨

WEKO 402
e-Rad 80295005
Scopus著者ID 55739611300
九工大研究者情報 25

神谷, 亨

Search repository
間普, 真吾

× 間普, 真吾

WEKO 34555

間普, 真吾

Search repository
木戸, 尚治

× 木戸, 尚治

WEKO 34556

木戸, 尚治

Search repository
抄録
内容記述タイプ Abstract
内容記述 Due to the respiratory diseases such as chronic obstructive pulmonary disease and lower respiratory tract infections nearly 8 million people were died worldwide each year. Reducing the number of deaths from respiratory diseases is a challenge to be solved worldwide. Early detection is the most efficient way to reduce the number of deaths in respiratory illness. As a result, the spread of infection can be suppressed, and the therapeutic effect can be enhanced. Currently, auscultation is performed as a promising method for early detection of respiratory diseases. Auscultation can estimate respiratory diseases by distinguishing abnormal sounds contained in respiratory sounds. However, medical staff need to be trained to perform auscultation with high accuracy. Also, the diagnostic results depend on each staff subjectively, which can lead to inconsistent results. Therefore, in some environments, a shortage of specialized health care workers can lead to the spread of respiratory illness. To solve this problem, an application that analyzes respiratory sounds and outputs diagnostic results is needed. In this paper, we use a newly proposed deep learning model to automatically classify the respiratory sound data from the ICBHI 2017 Challenge Dataset. Short-Time Fourier Transform, Constant-Q Transform, and Continuous Wavelet Transform are applied to the respiratory sound data to convert it into the time-frequency region. Then, the obtained three types of breath sound images are input to CRNN (Convolutional Recurrent Neural Network) having scSE (Spatial and Channel Squeeze & Excitation) Block. The accuracy is improved by weighting the features of each image. As a result, AUC (Area Under the Curve): (Normal:0.87, Crackle:0.88, Wheeze:0.92, Both:0.89), Sensitivity: 0.67, Specificity: 0.82, Average Score: 0.75, Harmonic Score: 0.74, Accuracy: 0.75 were obtained.
書誌情報 医用画像情報学会雑誌

巻 38, 号 4, p. 152-159, 発行日 2021-12-27
出版者
出版者 医用画像情報学会
ISSN
収録物識別子タイプ ISSN
収録物識別子 1880-4977
ISSN
収録物識別子タイプ ISSN
収録物識別子 0910-1543
NCID
収録物識別子タイプ NCID
収録物識別子 AN10156808
DOI
関連タイプ isIdenticalTo
識別子タイプ DOI
関連識別子 https://doi.org/10.11318/mii.38.152
論文ID(NAID)
関連タイプ isIdenticalTo
識別子タイプ NAID
関連識別子 http://ci.nii.ac.jp/naid/130008136055
キーワード
主題Scheme Other
主題 Respiratory Sounds Classification
キーワード
主題Scheme Other
主題 Computer Aided Diagnosis
キーワード
主題Scheme Other
主題 Time-Frequency Analysis
キーワード
主題Scheme Other
主題 Deep Learning
日本十進分類法
主題Scheme NDC
主題 492
著作権関連情報
権利情報 Copyright (c) 2021 医用画像情報学会
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
査読の有無
値 yes
連携ID
10861
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 12:35:58.427418
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3