WEKO3
-
RootNode
アイテム
Weakly unsupervised conditional generative adversarial network for image-based prognostic prediction for COVID-19 patients based on chest CT
http://hdl.handle.net/10228/00009067
http://hdl.handle.net/10228/000090676834c9a2-f9b5-4f3d-abae-42c2e96bbc0d
名前 / ファイル | ライセンス | アクション |
---|---|---|
LaSEINE-2021_027.pdf (3.0 MB)
|
|
Item type | 学術雑誌論文 = Journal Article(1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2023-02-02 | |||||||||||
資源タイプ | ||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||
資源タイプ | journal article | |||||||||||
タイトル | ||||||||||||
タイトル | Weakly unsupervised conditional generative adversarial network for image-based prognostic prediction for COVID-19 patients based on chest CT | |||||||||||
言語 | en | |||||||||||
言語 | ||||||||||||
言語 | eng | |||||||||||
著者 |
Uemura, Tomoki
× Uemura, Tomoki× Näppi, Janne J.× Watari, Chinatsu× Hironaka, Toru× 神谷, 亨
WEKO
402
× Yoshida, Hiroyuki |
|||||||||||
抄録 | ||||||||||||
内容記述タイプ | Abstract | |||||||||||
内容記述 | Because of the rapid spread and wide range of the clinical manifestations of the coronavirus disease 2019 (COVID-19), fast and accurate estimation of the disease progression and mortality is vital for the management of the patients. Currently available image-based prognostic predictors for patients with COVID-19 are largely limited to semi-automated schemes with manually designed features and supervised learning, and the survival analysis is largely limited to logistic regression. We developed a weakly unsupervised conditional generative adversarial network, called pix2surv, which can be trained to estimate the time-to-event information for survival analysis directly from the chest computed tomography (CT) images of a patient. We show that the performance of pix2surv based on CT images significantly outperforms those of existing laboratory tests and image-based visual and quantitative predictors in estimating the disease progression and mortality of COVID-19 patients. Thus, pix2surv is a promising approach for performing image-based prognostic predictions. | |||||||||||
言語 | en | |||||||||||
書誌情報 |
en : Medical Imaging Analysis 巻 73, p. 102159-1-102159-14, 発行日 2021-07-23 |
|||||||||||
出版社 | ||||||||||||
出版者 | Elsevier | |||||||||||
言語 | en | |||||||||||
DOI | ||||||||||||
関連タイプ | isIdenticalTo | |||||||||||
識別子タイプ | DOI | |||||||||||
関連識別子 | https://doi.org/10.1016/j.media.2021.102159 | |||||||||||
日本十進分類法 | ||||||||||||
主題Scheme | NDC | |||||||||||
主題 | 492 | |||||||||||
ISSN | ||||||||||||
収録物識別子タイプ | EISSN | |||||||||||
収録物識別子 | 1361-8423 | |||||||||||
ISSN | ||||||||||||
収録物識別子タイプ | PISSN | |||||||||||
収録物識別子 | 1361-8415 | |||||||||||
著作権関連情報 | ||||||||||||
権利情報 | Copyright (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://creativecommons.org/licenses/by/4.0/) | |||||||||||
キーワード | ||||||||||||
主題Scheme | Other | |||||||||||
主題 | Unsupervised deep learning | |||||||||||
キーワード | ||||||||||||
主題Scheme | Other | |||||||||||
主題 | Survival analysis | |||||||||||
キーワード | ||||||||||||
主題Scheme | Other | |||||||||||
主題 | COVID-19 | |||||||||||
キーワード | ||||||||||||
主題Scheme | Other | |||||||||||
主題 | Computed tomography | |||||||||||
出版タイプ | ||||||||||||
出版タイプ | VoR | |||||||||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||||||||
査読の有無 | ||||||||||||
値 | yes | |||||||||||
連携ID | ||||||||||||
値 | 10856 |