ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "33a403b4-1d78-4a95-b269-1898b779dfa2"}, "_deposit": {"created_by": 3, "id": "7864", "owners": [3], "pid": {"revision_id": 0, "type": "depid", "value": "7864"}, "status": "published"}, "_oai": {"id": "oai:kyutech.repo.nii.ac.jp:00007864", "sets": ["9"]}, "author_link": ["34570", "402", "34562", "34567", "34571", "34573", "34569", "34565", "34563", "34568", "34564"], "item_21_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2021-07-23", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "102159-14", "bibliographicPageStart": "102159-1", "bibliographicVolumeNumber": "73", "bibliographic_titles": [{"bibliographic_title": "Medical Imaging Analysis"}]}]}, "item_21_description_4": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "Because of the rapid spread and wide range of the clinical manifestations of the coronavirus disease 2019 (COVID-19), fast and accurate estimation of the disease progression and mortality is vital for the management of the patients. Currently available image-based prognostic predictors for patients with COVID-19 are largely limited to semi-automated schemes with manually designed features and supervised learning, and the survival analysis is largely limited to logistic regression. We developed a weakly unsupervised conditional generative adversarial network, called pix2surv, which can be trained to estimate the time-to-event information for survival analysis directly from the chest computed tomography (CT) images of a patient. We show that the performance of pix2surv based on CT images significantly outperforms those of existing laboratory tests and image-based visual and quantitative predictors in estimating the disease progression and mortality of COVID-19 patients. Thus, pix2surv is a promising approach for performing image-based prognostic predictions.", "subitem_description_type": "Abstract"}]}, "item_21_description_60": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"subitem_description": "Journal Article", "subitem_description_type": "Other"}]}, "item_21_full_name_3": {"attribute_name": "著者別名", "attribute_value_mlt": [{"nameIdentifiers": [{"nameIdentifier": "34568", "nameIdentifierScheme": "WEKO"}], "names": [{"name": "Uemura,  T."}]}, {"nameIdentifiers": [{"nameIdentifier": "34569", "nameIdentifierScheme": "WEKO"}], "names": [{"name": "Näppi,  J.J."}]}, {"nameIdentifiers": [{"nameIdentifier": "34570", "nameIdentifierScheme": "WEKO"}], "names": [{"name": "Watari,  C."}]}, {"nameIdentifiers": [{"nameIdentifier": "34571", "nameIdentifierScheme": "WEKO"}], "names": [{"name": "Hironaka,  T."}]}, {"nameIdentifiers": [{"nameIdentifier": "402", "nameIdentifierScheme": "WEKO"}, {"nameIdentifier": "80295005", "nameIdentifierScheme": "e-Rad", "nameIdentifierURI": "https://nrid.nii.ac.jp/ja/nrid/1000080295005/"}, {"nameIdentifier": "55739611300", "nameIdentifierScheme": "Scopus著者ID", "nameIdentifierURI": "https://www.scopus.com/authid/detail.uri?authorId=55739611300"}, {"nameIdentifier": "25", "nameIdentifierScheme": "九工大研究者情報", "nameIdentifierURI": "https://hyokadb02.jimu.kyutech.ac.jp/html/25_ja.html"}], "names": [{"name": "Kamiya,  T."}]}, {"nameIdentifiers": [{"nameIdentifier": "34573", "nameIdentifierScheme": "WEKO"}], "names": [{"name": "Yoshida, H."}]}]}, "item_21_publisher_7": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "Elsevier"}]}, "item_21_relation_12": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type": "isIdenticalTo", "subitem_relation_type_id": {"subitem_relation_type_id_text": "https://doi.org/10.1016/j.media.2021.102159", "subitem_relation_type_select": "DOI"}}]}, "item_21_rights_13": {"attribute_name": "権利", "attribute_value_mlt": [{"subitem_rights": "Copyright (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://creativecommons.org/licenses/by/4.0/)"}]}, "item_21_select_59": {"attribute_name": "査読の有無", "attribute_value_mlt": [{"subitem_select_item": "yes"}]}, "item_21_source_id_8": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1361-8415", "subitem_source_identifier_type": "ISSN"}]}, "item_21_subject_16": {"attribute_name": "日本十進分類法", "attribute_value_mlt": [{"subitem_subject": "492", "subitem_subject_scheme": "NDC"}]}, "item_21_text_36": {"attribute_name": "著者所属", "attribute_value_mlt": [{"subitem_text_value": "Massachusetts General Hospital and Harvard Medical School, Kyushu Institute of Technology"}, {"subitem_text_value": "Massachusetts General Hospital and Harvard Medical School"}, {"subitem_text_value": "Massachusetts General Hospital and Harvard Medical School"}, {"subitem_text_value": "Massachusetts General Hospital and Harvard Medical School"}, {"subitem_text_value": "Kyushu Institute of Technology"}, {"subitem_text_value": "Massachusetts General Hospital and Harvard Medical School"}]}, "item_21_text_63": {"attribute_name": "連携ID", "attribute_value_mlt": [{"subitem_text_value": "10856"}]}, "item_21_version_type_58": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_970fb48d4fbd8a85", "subitem_version_type": "VoR"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Uemura,  Tomoki"}], "nameIdentifiers": [{"nameIdentifier": "34562", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Näppi,  Janne J."}], "nameIdentifiers": [{"nameIdentifier": "34563", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Watari,  Chinatsu"}], "nameIdentifiers": [{"nameIdentifier": "34564", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Hironaka,  Toru"}], "nameIdentifiers": [{"nameIdentifier": "34565", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Kamiya, Tohru"}], "nameIdentifiers": [{"nameIdentifier": "402", "nameIdentifierScheme": "WEKO"}, {"nameIdentifier": "80295005", "nameIdentifierScheme": "e-Rad", "nameIdentifierURI": "https://nrid.nii.ac.jp/ja/nrid/1000080295005/"}, {"nameIdentifier": "55739611300", "nameIdentifierScheme": "Scopus著者ID", "nameIdentifierURI": "https://www.scopus.com/authid/detail.uri?authorId=55739611300"}, {"nameIdentifier": "25", "nameIdentifierScheme": "九工大研究者情報", "nameIdentifierURI": "https://hyokadb02.jimu.kyutech.ac.jp/html/25_ja.html"}]}, {"creatorNames": [{"creatorName": "Yoshida,  Hiroyuki"}], "nameIdentifiers": [{"nameIdentifier": "34567", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2023-02-02"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "LaSEINE-2021_027.pdf", "filesize": [{"value": "3.0 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 3000000.0, "url": {"label": "LaSEINE-2021_027.pdf", "url": "https://kyutech.repo.nii.ac.jp/record/7864/files/LaSEINE-2021_027.pdf"}, "version_id": "dc3448a6-ea07-426a-a1e9-1495db49d1d0"}]}, "item_keyword": {"attribute_name": "キーワード", "attribute_value_mlt": [{"subitem_subject": "Unsupervised deep learning", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Survival analysis", "subitem_subject_scheme": "Other"}, {"subitem_subject": "COVID-19", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Computed tomography", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Weakly unsupervised conditional generative adversarial network for image-based prognostic prediction for COVID-19 patients based on chest CT", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Weakly unsupervised conditional generative adversarial network for image-based prognostic prediction for COVID-19 patients based on chest CT"}]}, "item_type_id": "21", "owner": "3", "path": ["9"], "permalink_uri": "http://hdl.handle.net/10228/00009067", "pubdate": {"attribute_name": "公開日", "attribute_value": "2023-02-02"}, "publish_date": "2023-02-02", "publish_status": "0", "recid": "7864", "relation": {}, "relation_version_is_last": true, "title": ["Weakly unsupervised conditional generative adversarial network for image-based prognostic prediction for COVID-19 patients based on chest CT"], "weko_shared_id": 3}
  1. 学術雑誌論文
  2. 4 自然科学

Weakly unsupervised conditional generative adversarial network for image-based prognostic prediction for COVID-19 patients based on chest CT

http://hdl.handle.net/10228/00009067
http://hdl.handle.net/10228/00009067
6834c9a2-f9b5-4f3d-abae-42c2e96bbc0d
名前 / ファイル ライセンス アクション
LaSEINE-2021_027.pdf LaSEINE-2021_027.pdf (3.0 MB)
Item type 学術雑誌論文 = Journal Article(1)
公開日 2023-02-02
タイトル
タイトル Weakly unsupervised conditional generative adversarial network for image-based prognostic prediction for COVID-19 patients based on chest CT
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 Uemura, Tomoki

× Uemura, Tomoki

WEKO 34562

Uemura, Tomoki

Search repository
Näppi, Janne J.

× Näppi, Janne J.

WEKO 34563

Näppi, Janne J.

Search repository
Watari, Chinatsu

× Watari, Chinatsu

WEKO 34564

Watari, Chinatsu

Search repository
Hironaka, Toru

× Hironaka, Toru

WEKO 34565

Hironaka, Toru

Search repository
Kamiya, Tohru

× Kamiya, Tohru

WEKO 402
e-Rad 80295005
Scopus著者ID 55739611300
九工大研究者情報 25

Kamiya, Tohru

Search repository
Yoshida, Hiroyuki

× Yoshida, Hiroyuki

WEKO 34567

Yoshida, Hiroyuki

Search repository
抄録
内容記述タイプ Abstract
内容記述 Because of the rapid spread and wide range of the clinical manifestations of the coronavirus disease 2019 (COVID-19), fast and accurate estimation of the disease progression and mortality is vital for the management of the patients. Currently available image-based prognostic predictors for patients with COVID-19 are largely limited to semi-automated schemes with manually designed features and supervised learning, and the survival analysis is largely limited to logistic regression. We developed a weakly unsupervised conditional generative adversarial network, called pix2surv, which can be trained to estimate the time-to-event information for survival analysis directly from the chest computed tomography (CT) images of a patient. We show that the performance of pix2surv based on CT images significantly outperforms those of existing laboratory tests and image-based visual and quantitative predictors in estimating the disease progression and mortality of COVID-19 patients. Thus, pix2surv is a promising approach for performing image-based prognostic predictions.
書誌情報 Medical Imaging Analysis

巻 73, p. 102159-1-102159-14, 発行日 2021-07-23
出版者
出版者 Elsevier
ISSN
収録物識別子タイプ ISSN
収録物識別子 1361-8415
DOI
関連タイプ isIdenticalTo
識別子タイプ DOI
関連識別子 https://doi.org/10.1016/j.media.2021.102159
キーワード
主題Scheme Other
主題 Unsupervised deep learning
キーワード
主題Scheme Other
主題 Survival analysis
キーワード
主題Scheme Other
主題 COVID-19
キーワード
主題Scheme Other
主題 Computed tomography
日本十進分類法
主題Scheme NDC
主題 492
著作権関連情報
権利情報 Copyright (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://creativecommons.org/licenses/by/4.0/)
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
査読の有無
値 yes
連携ID
10856
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 12:36:03.347746
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3