ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学位論文
  2. 学位論文

移動ロボットにおける環境の分節化とグラフベース地図の構築

https://doi.org/10.18997/00000787
https://doi.org/10.18997/00000787
ce5d09f9-a99f-412f-ae5a-98292e4f1d02
名前 / ファイル ライセンス アクション
D-29_sei_k_86.pdf D-29_sei_k_86.pdf (2.1 MB)
Item type 学位論文 = Thesis or Dissertation(1)
公開日 2008-09-25
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_db06
資源タイプ doctoral thesis
タイトル
タイトル Segmentation of Environment and Formation of Graph-based Maps in Mobile Robots
言語 en
タイトル
タイトル 移動ロボットにおける環境の分節化とグラフベース地図の構築
言語 ja
言語
言語 eng
著者 Muslim, Muhammad Aziz

× Muslim, Muhammad Aziz

en Muslim, Muhammad Aziz

Search repository
抄録
内容記述タイプ Abstract
内容記述 A new approach in Artificial Intelligence (AI), which focuses on agent’s interaction with the world, is expected to solve difficulties in the classical AI. The interaction leads an agent to exhibit emergent behaviors, which are not preprogrammed by a designer. This is what biological agents (i.e. animals and humans) do in their daily life. This dissertation aims at finding mechanisms necessary for this. A mobile robot is used as a test bed for this purpose. The real world is completely different from a virtual world frequently used in the classical AI. The real world is always subject to complexity, noise, and nonlinearity. Information on the real world is often spatio-temporal in nature, and is hard to do information processing in real time. Solving real world problems often leads to unsatisfactory results due to its inherent difficulties. One promising approach to this is to segment the spatio-temporal information into meaningful elements. The purpose of the present thesis is to segment the world and to form a graph-based map for efficient processing. Task segmentation in navigation of a mobile robot based on sensory signals is important for realizing efficient navigation, hence attracted wide attention. In this research, a new approach to segmentation in a mobile robot by a modular network SOM (mnSOM) is proposed. In a mobile robot, the standard mnSOM is not applicable as it is, because it is based on an assumption that class labels are known a priori. In a mobile robot, however, only a sequence of data without segmentation is available. Hence, we propose to decompose it into many subsequences, supposing that a class label does not change within a subsequence. Accordingly, training of mnSOM is done for each subsequence in contrast to that for each class in the standard mnSOM. The resulting mnSOM demonstrates segmentation performance of 94.05% for a novel dataset based on an unrealistic assumption that winner modules corresponding to subsequences in the same class share the same label. Since this is not at all practical, the current study proposes segmentation without this unrealistic assumption. Firstly, the conventional hierarchical clustering is applied to the resulting mnSOM. Without the above unrealistic assumption, its segmentation performance deteriorates by only 1.2%. Hierarchical clustering assumes that the distances between any pair of modules are provided with precision, but this is not the case in mnSOM. Accordingly, this is followed by a clustering based on only the distance between spatially adjacent modules with modification by their temporal contiguity. This clustering with spatio-temporal contiguity provides superior performance to the conventional hierarchical clustering. Based on the resulting mnSOM, a graph-based map is formed. Due to stochastic character of sensory-motor information, I propose to use Hidden Markov models (HMMs) instead of a deterministic method. Given a sequence of data, mnSOM produces sequence of labels, which may includes erroneous ones due to noise. HMMs are employed for better estimates of labels. Finally, from the resulting sequence of labels, L-junctions and T-junctions are located, and are used as nodes for constructing a graph-based map. For comparative study, vector quantization of sensory-motor signals is also tried. The resulting HMMs based on the quantized data also generate a graph-based map. The resulting graph-based map also contributes to goal seeking. Simulation result shows that the resulting graph-based map is efficient for goal seeking, since it is not necessary to construct a new map every time the environment changes.
目次
内容記述タイプ Other
内容記述 1 Introduction||2 Overview of Related Studies||3 Task Segmentation using mnSOM and Clustering||4 Formation of Graph-based Maps||5 Experimental Results on Task Segmentation and Clustering||6 Experimental Results on the Formation of Graph basedMaps||7 Conclusions and Discussions||Bibliography
備考
内容記述タイプ Other
内容記述 九州工業大学博士学位論文 学位記番号:生工博甲第86号 学位授与年月日:平成20年3月25日
キーワード
主題Scheme Other
主題 Segmentation
キーワード
主題Scheme Other
主題 Mobile robot
キーワード
主題Scheme Other
主題 Hidden Markov Models
キーワード
主題Scheme Other
主題 Graph-based map
キーワード
主題Scheme Other
主題 mnSOM
キーワード
主題Scheme Other
主題 Clustering
アドバイザー
石川, 眞澄
学位授与番号
学位授与番号 甲第86号
学位名
学位名 博士(工学)
学位授与年月日
学位授与年月日 2008-03-25
学位授与機関
学位授与機関識別子Scheme kakenhi
学位授与機関識別子 17104
学位授与機関名 九州工業大学
学位授与年度
内容記述タイプ Other
内容記述 平成19年度
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
ID登録
ID登録 10.18997/00000787
ID登録タイプ JaLC
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 12:41:09.011230
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3